УДК 656.13.021.6

Азиев Ядулла Гасан оглы, Старший преподаватель, Нахчыванский Государственный Университет

Маммадова Гюльшан Нуреддин кызы, Старший преподаватель, Нахчыванский Государственный Университет

Алиева Хавабейим Габиль кызы, Магистрант, Нахчыванский Государственный Университет

ИСПОЛЬЗОВАНИЕ АЛЬТЕРНАТИВНЫХ ВИДОВ ТОПЛИВА НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ: ПРЕИМУЩЕСТВА И ПРОБЛЕМЫ

Аннотация. В статье рассматриваются основные направления применения альтернативных видов топлива в автомобильном транспорте. Особое внимание уделено экологическим, экономическим и технологическим преимуществам использования альтернативных энергоресурсов. Анализируются необходимость развития инновационных технологий для ускорения перехода на устойчивые источники энергии в транспортной отрасли.

Ключевые слова: Альтернативное топливо, автомобильный транспорт, биотопливо, электромобили, экологическая устойчивость.

Введение

Автомобильный транспорт является одной из важнейших составляющих мировой экономики, обеспечивая мобильность населения и развитие промышленности. Однако его стремительный рост привёл к серьёзным экологическим последствиям, включая увеличение выбросов углекислого газа (CO_2), загрязнение воздуха и рост зависимости от нефти. В связи с этим во многих странах наблюдается переход к использованию альтернативных видов топлива (ABT), которые способны снизить вредное воздействие транспортного сектора на окружающую среду [1].

К альтернативным видам топлива относят биоэтанол, биодизель, природный газ (CNG, LNG), сжиженный нефтяной газ (LPG), водород и электроэнергию. Их использование позволяет значительно сократить выбросы парниковых газов, повысить энергетическую независимость стран и стимулировать развитие инновационных технологий (Таблица 1).

Таблица 1. Сравнительные показатели традиционных и альтернативных видов топлива

Вид топлива	Теплотворная способность, МДж/кг	Выбросы СО ₂ , г/км		Экологичность	Особенности применения
Бензин	44	240	1,00	Низкий	Широко доступен
Дизельное топливо	43	220	0,95	Низкий	Высокая токсичность
Биодизель	37	160	1,10	Средний	Требует адаптации двигателя

РАЗДЕЛ: Инженерное дело, технологии и технические науки Направление: Технические науки

CNG	50	170	0,80	Высокий	Ограниченная инфраструктура
Электроэнергия	-	0	0,70	Очень высокий	Зависимость от генерации
Водород	120	0	1,50	Очень высокий	Сложности хранения

1. Основные виды альтернативных топлив и их характеристики.

1.1. Биотопливо

Биотопливо первого и второго поколения производится из растительного сырья и органических отходов. Биоэтанол часто используется в смеси с бензином, а биодизель — в комбинации с дизельным топливом. Преимуществом биотоплива является его высокая воспроизводимость и снижение выбросов CO_2 на 40-60%. Однако его производство требует значительных земельных ресурсов, что создаёт конкуренцию с сельским хозяйством.

1.2. Природный и сжиженный газ

Природный газ (CNG) и сжиженный газ (LPG) являются наиболее распространёнными альтернативными энергоносителями в автотранспорте. Газовые двигатели отличаются низким уровнем выбросов оксидов азота (NOx) и снижением выбросов CO_2 на 20-25 % по сравнению с бензином.

Проблемой остаётся недостаточное количество заправочных станций, а также необходимость адаптации двигателей под газовое топливо.

1.3. Электроэнергия

Электромобили и гибридные автомобили становятся символом экологичного транспорта XXI века. Их основными преимуществами являются отсутствие прямых выбросов, высокий КПД электродвигателя (до 90 %) и низкие эксплуатационные расходы. Тем не менее, широкое распространение электромобилей сдерживается высокой стоимостью аккумуляторов, ограниченным запасом хода и зависимостью от источника генерации электроэнергии (Рисунок 1).

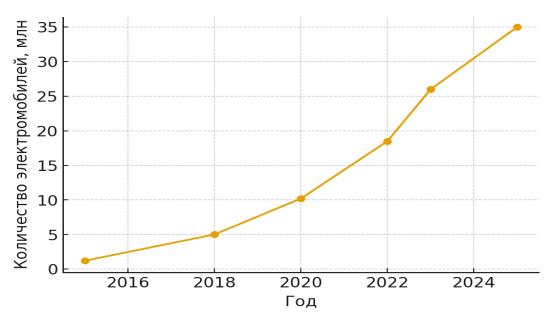


Рисунок 1. Рост мирового парка электромобилей (2015–2025 гг.)

Источник: составлено автором по данным International Energy Agency (IEA), 2023.

1.4. Водород

Водородное топливо рассматривается как наиболее перспективное направление. Топливные элементы, преобразующие водород в электричество, обеспечивают высокую эффективность и полное отсутствие вредных выбросов (побочный продукт – вода). Основные трудности связаны с дороговизной производства водорода, сложностью его хранения и транспортировки, а также отсутствием инфраструктуры [2].

2. Преимущества применения альтернативных топлив.

Использование ABT в автомобильном транспорте обеспечивает ряд значительных преимуществ:

- 1. Экологическая безопасность. Снижение выбросов CO₂, NOx, CO и твёрдых частиц способствует улучшению качества воздуха в городах.
- 2. Энергетическая независимость. Переход на возобновляемые ресурсы снижает зависимость от импорта нефти.
- 3. Экономическая устойчивость. В долгосрочной перспективе альтернативные источники энергии позволяют снизить затраты на эксплуатацию транспорта.
- 4. Инновационное развитие. Внедрение новых технологий стимулирует развитие отечественной науки, инженерии и производства оборудования [3].

3. Основные проблемы внедрения альтернативных топлив.

Несмотря на очевидные преимущества, широкое распространение альтернативных топлив сталкивается с рядом технических и организационно-экономических проблем:

- Недостаток инфраструктуры. Отсутствие зарядных и газозаправочных станций ограничивает массовое использование ABT.
- Высокая стоимость технологий. Производство водородных топливных элементов и аккумуляторов остаётся дорогим.
- Ограниченные запасы биосырья. Для производства биотоплива требуется большое количество сельскохозяйственных культур.
- Неравномерность государственной поддержки. В разных странах наблюдаются различные уровни субсидирования и налоговых стимулов.

Требования к технической адаптации транспорта. Многие двигатели требуют модернизации для работы на альтернативных видах топлива [4]. (Таблица 2).

Таблица 2.

Преимущества и проблемы внедрения альтернативных топлив

Преимущества	Проблемы		
Снижение выбросов загрязняющих веществ	Недостаток инфраструктуры		
Энергетическая независимость	Высокая стоимость технологий		
Экономия на эксплуатации	Ограниченные запасы биосырья		
Повышение инновационности отрасли	Необходимость адаптации транспорта		

4. Пути решения и перспективы развития.

Для эффективного перехода на альтернативные виды топлива необходим комплексный подход, включающий:

- развитие инфраструктуры за счёт государственных и частных инвестиций;
- стандартизацию технологий и гармонизацию технических требований;

- финансовую поддержку производителей и потребителей экологичного транспорта;
 - исследования в области энергоэффективности и хранения энергии;
- повышение общественной осведомлённости о преимуществах экологичных видов топлива.

В перспективе ближайших десятилетий ожидается, что электрическая и водородная энергетика займут ключевые позиции в транспортном секторе, а биотопливо и природный газ будут играть важную роль как переходные решения [5].

5. Технологические инновации и перспективы развития альтернативных топлив

Современные тенденции в области транспорта демонстрируют активное внедрение инновационных технологий, направленных на повышение эффективности и устойчивости использования альтернативных видов топлива. Технологические разработки позволяют не только улучшать характеристики самих топлив, но и совершенствовать инфраструктуру их производства, хранения и распределения [6].

Одним из перспективных направлений является развитие биотоплива второго и третьего поколения, получаемого из отходов сельского хозяйства, водорослей и органических остатков. Такие технологии позволяют сократить использование пахотных земель и обеспечить практически безотходное производство.

В сфере электротранспорта значительный прогресс достигнут в разработке твердотельных аккумуляторов, которые обладают более высокой энергоёмкостью, меньшим временем зарядки и повышенной безопасностью по сравнению с литий-ионными. Эти технологии позволяют значительно увеличить запас хода электромобилей и снизить их себестоимость.

Развитие водородной энергетики также активно продолжается. Наиболее перспективным направлением считается производство «зелёного» водорода методом электролиза воды с использованием возобновляемых источников энергии — солнечных и ветровых электростанций. Это решение минимизирует углеродный след при производстве топлива [7].

Инновационные решения внедряются и в сфере цифровизации транспортных процессов. Применение систем мониторинга, анализа больших данных (Big Data) и искусственного интеллекта (AI) позволяет оптимизировать маршруты, снизить потребление энергии и прогнозировать техническое состояние транспортных средств, работающих на альтернативных видах топлива.

В будущем можно ожидать интеграцию энергетических и транспортных систем в единые интеллектуальные сети (smart grids), где транспортные средства будут не только потреблять, но и возвращать энергию в сеть. Такие решения формируют основу для создания устойчивых и саморегулирующихся транспортных экосистем [8].

6. Экономическая эффективность перехода на альтернативные виды топлива

Переход на альтернативные виды топлива требует значительных первоначальных инвестиций, связанных с модернизацией автопарка, развитием инфраструктуры заправочных станций, а также внедрением новых технологий в производственный процесс. Однако в долгосрочной перспективе такие вложения оказываются экономически оправданными [9].

Использование сжиженного природного газа (СПГ), биотоплива или электрической энергии позволяет существенно сократить эксплуатационные расходы. Например, стоимость пробега одного километра на электромобиле в 3-5 раз ниже, чем на автомобиле с бензиновым двигателем. Аналогичные тенденции наблюдаются и при использовании газомоторного топлива — срок окупаемости оборудования составляет в среднем от 2 до 4 лет.

Кроме прямых экономических выгод, внедрение альтернативных топлив снижает зависимость экономики от импорта нефти и нефтепродуктов, что повышает энергетическую безопасность государства. Государственные субсидии, налоговые льготы и преференции для владельцев экологичных транспортных средств также способствуют ускорению окупаемости проектов в данной сфере [10].

Таким образом, экономическая эффективность перехода на альтернативные виды топлива проявляется как на уровне отдельных предприятий и транспортных компаний, так и на уровне национальной экономики в целом. Долгосрочные выгоды в виде снижения эксплуатационных издержек, уменьшения выбросов и повышения устойчивости транспортной системы делают этот переход стратегически оправданным направлением развития [11].

Заключение.

Использование альтернативных видов топлива на автомобильном транспорте является стратегическим направлением развития транспортной отрасли, способствующим повышению экологической устойчивости, снижению углеродного следа и укреплению энергетической независимости государств. Несмотря на существующие проблемы — экономические, технологические и инфраструктурные — наблюдается устойчивый рост интереса к инновационным источникам энергии. Будущее автомобильного транспорта неразрывно связано с диверсификацией топливно-энергетического баланса и развитием чистых технологий, что требует системных мер на уровне государства, науки и бизнеса.

Список литературы:

- 1. Афанасьев, В. В. (2022). Альтернативное топливо и экологический транспорт. Москва: Наука. 248 с.
- 2. Белоусов, А. П. (2021). Водородная энергетика и её применение в транспорте. СПб.: Политех-пресс. -312 с.
- 3. Y.H. Haziyev, A.A. Aliyev, M.M. Seyidova, et.al. "Predicting failures and maintenance in transportation systems using ai and data analytics" International Journal on Technical and Physical Problems of Engineering, vol. 17, №3, pp. 264 274, 2025
 - 4. European Commission. (2023). Alternative Fuels Infrastructure Directive. Brussels.
- 5. G.Z.Abbasov, G.N.Mammadova, T.K.Nurubeyli, et.al. "Intelligent maintenance strategies for transport systems: a machine learning approach to thermomechanical stress reduction" International Journal on Technical and Physical Problems of Engineering, vol. 17, №2, pp. 152 162, 2025
- 6. IEA (2023). Global EV Outlook 2023: Securing supplies for an electric future. Paris: International Energy Agency.
- 7. Карпенко, И. С. (2020). Природный газ и биотопливо как источники энергии для автомобильного транспорта. Транспортное дело России, N28, с. 15 21.
- 8. A.A.Aliyev, T.K.Nurubeyli, Y.H.Haziyev, et.al. "Innovative noise mitigation techniques in transportation systems: toward sustainable urban mobility" International Journal on Technical and Physical Problems of Engineering, vol. 17, №2, pp. 142 151, 2025
- 9. UNECE (2022). Trends and Challenges in the Use of Alternative Fuels in Road Transport. Geneva: United Nations Economic Commission for Europe.
- 10. Широков, Е. Н. (2021). Развитие инфраструктуры электромобилей: мировая практика и российские реалии. Автотранспортное предприятие, №4, с. 34-40.
- 11. S.Y. Aliyev, Y.H. Haziyev, R.S. Tagiyev, et.al. "Assessing the role of transport infrastructure in regional economic development: a strategic analysis" International Journal on Technical and Physical Problems of Engineering, vol. 17, №3, pp. 306 314, 2025