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METO/J MASTER-J: HAXOXKXKIEHUE TOYHOI'O KOHEYHOI'O MHOKECTBA
KOPHEM TPEXYJIEHOB C KOMILIEKCHBIMU CTENEHAMUA
THE MASTER-J METHOD: FINDING THE EXACT FINITE SET OF ROOTS OF
TRINOMIALS WITH COMPLEX EXPONENTS

AHHoTanusi. Mbl peJcTaBisieM aHaIMTUUYEeCKU MeTo (MeTon Master-J) st HaxoxXaAeHUs
KOpHEH anredpandyeckux ypaBHEHHUH ¢ KOMIIJIEKCHBIMH CTENEHSAMHU, KOTOPBIN MO3BOJISIET:

1. Onpenenutb, UMEET JIU YpaBHEHHE KOHEYHOE WIH OECKOHEYHOE YMCIIO KOPHEH.
2. HaiiTu Bce KOpHU, KOTja X YNCJIO KOHEYHO.

3. HpeILOCTaBI/ITB SIBHBIC BBIPAXKCHUA IJIA KAXKAOTI'O KOPHS.

4. Onucarb CTpYKTYypy BETBJICHMS KOPHEN B KOMIUIEKCHOM INIOCKOCTH, KOT1a YHCIIO

KOpHEeH 0eCKOHEYHO.
Abstract. We present an analytic method (the Master-J method) for finding the roots of an
algebraic equation with complex exponents, enabling:

1. Determination of whether the equation has a finite or infinite number of roots.

2. Finding all roots when their number is finite.

3. Providing explicit expressions for each root.

4. Providing a description of the branching structure of the roots in the complex plane

when the number of roots is infinite.

KuaroueBbie cioBa: Master-J, macrep-psa, aHaTUTHYECKHE PEIICHUS, CTEHEHHbIE PSJIbI,
KOMIIJICKCHBIC CTCIICHH.

Key words: Master-J, master series, analytical solutions, power series, complex degrees.

1. INTRODUCTION

Until now, there has been no general analytical method for solving equations with complex
exponents. This fundamental limitation equally applies to equations with irrational exponents and to
algebraic equations of degree five and higher, where traditional algebraic methods fail.

This work introduces the Master-J method, which for the first time provides a unified
analytical framework for solving equations with integer, irrational, and complex exponents. The
method is based on the construction of "master series" - power series whose coefficients are expressed
through generalized factorials called "master numbers". The key advantage of the method is its ability
to systematically determine the solution set: divergence of the series for a specific branch index
always indicates the absence of a root for that branch, while convergence indicates a potential root
that requires verification through the principal branch of the complex logarithm.

Using the example of trinomial equations with complex exponents whose real parts are
distinct and non-zero, it is shown that the Master-J method guarantees finding all roots and proves
the absence of other solutions. The method demonstrates that in many cases (particularly when the
real parts of the exponents are distinct and non-zero) the number of roots is finite, and this fact can
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be established analytically. Thus, the method eliminates a fundamental gap associated with the lack
of tools for rigorous analysis of such equations.

While classical complex analysis recognizes the multi-valued nature of complex powers, this
work focuses on roots verifiable through the principal branch, which correspond to solutions in most
applied contexts. The Master-J method provides a systematic way to identify these physically
meaningful solutions.

The work is organized as follows: Section 2 briefly describes the apparatus of master numbers
and master series; Section 3 demonstrates the application of the method to specific equations with
complex exponents; In Section 4 we conclude and discusses the implications and prospects of the
method’s application.

2. THE MASTER-J METHOD APPARATUS
We start by defining the fundamental objects of the method: “master number” and “mater
series”. A master number is defined by the formula:
mstr(m; s;r; t): = "7 = [[°21(m + st — 1)) (1)
where {m,s,r} are complex parameters and, by definition, "!5: = 1. A master series is defined
as the expansion:

t
msr(m; 5373 %) =758 = m + B2, (5 ) @
The following are important identities that follow from the above definitions:
11,;; = eg:fc (3)
axs ads

& TR @)

1.s a5 de?% 0.5
rox — dln%:i = dgfc = erx (5)
ey ®
(11'; )C :T/%:ia/cc (7)
T =T ®)

The convergence radius of the master series in the complex plane is as follows:
For r = 0: The master series converges if |sxe|<1 where e is Euler's number (the base of the
natural logarithm).

1
{le <SS #0 ©)
|x|] < 00,5 =0

For r # 0: The convergence condition takes a more complex form:

msr(m; s; r; x) converges if |r — s|I"=S![s|Isl|x|I"T < 1
|r_1||5/?”|

r—sl’ (10)

The key property of the method is that any trinomial equation Ay® + By? + C = 0 with
Re(a) > Re(b) > 0 can be reduced to one of six canonical forms of master equations:

Table 1
Canonical Master Equations
Original Reflection
Ay*=—-C-By" (1) Cy~®=—-A-By"™ (6)
By?™¢ = —A—Cy™® (2) Ay*? =-B—Cy™" (5)
CyP=-B-Ay*? (3 By? = —C — Ay* (4)
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However, to obtain all roots of the original trinomial equation, in practice it is sufficient to use
only three master equations. The remaining master equations are their mirror reflections: (1 and 6), (2
and 5), (3 and 4). They yield the same roots, sometimes for different values of the “root index” n.

The solution to this equation is identically equal to the corresponding master series:

py" =q+xy° (11)
s , (arg(ﬂ)+2nn)i
y=v-Lk3, Z=%, = %|e & ,NEZ (12, 13, 14)

where p and q are non-zero. Note that with the rescalingy — y = (¢/p)""yandx - % =
(p/q)%/"qx, we can write this equation as " = 1 + £9°. This means that, without any loss of
generality, we can always take p = g = 1. We use the method of series generalization theorem [1]
(analogous to Lagrange's theorem on the expansion of implicit functions) which allows us to express
y as a power series in X. In Appendix A, we present a 5-step procedure to obtain the above solution.

The six forms of master equations form three mirror pairs that yield identical sets of roots.
Thus, for a complete analysis of the original equation, it is sufficient to solve three independent master
equations. For equations with four or more terms, the method provides a merge operation of master
series, which allows constructing solutions in a similar analytical manner. For details on the merge
operation, please refer to Reference [2]. The JavaScript implementation of the merge algorithm can
be found in the Complex.js file (function maths) [3].

3. DETERMINING THE NUMBER OF ROOTS, THEIR VALUES, AND ANALYSIS
OF THEIR BRANCHING

Before considering specific examples, it is necessary to clarify the fundamental question of
choosing the branch of the complex logarithm when working with equations containing complex
exponents. The key point is that to verify a root of the original equation of the form F(y) = x, only the
principal branch of the logarithm (k=0) should be used. Using other branches (k € Z) is equivalent to
solving a different equation, for example |F (y)| = x, which does not correspond to the original problem

statement. Let's illustrate this with a simple example. Consider the equation 2 2\/§ = 4, which has asingle
obvious root y = 4. Let's verify this root strictly through the definition of the complex power:

%/Z _ eln|4|+arg2(4-)i+211:ik (15)

At k=0 we get /4 = 2, which satisfies the original equation. At k=1 we get /4 = -2,
therefore this value is not a root. Thus, to verify the root of the original equation we must use only
the principal branch (k=0). If we like to use other branches, we transform the original equation
23y = 4 into the equation |2}/y| = 4. A similar approach applies to equations with arbitrary
complex and irrational exponents. For example, the equation

y™ =888 —777i (16)

Has three roots verifiable via the principal branch. The common misconception about an
infinite number of roots arises from incorrect verification using all logarithm branches, which actually
corresponds to solving the equation

|y™| = |888 — 777i| @an
and not the original one.

The Master-J method is applied to trinomials of the form Ay® + By? + C = 0. During the
analysis, such an equation is transformed into one of six canonical master equations py” = q + xy?,
the solution of which is expressed through a master series. In this process, the complex logarithm is
used at several stages: twice during solution construction (when calculating the reference point v and
when raising it to the power vs) and twice during the final verification of the root by substitution into
the original equation. It is critically important that branching of the complex logarithm (selection of
the parameter n € Z) is required only at one stage - when calculating the reference point vii. At all
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other stages, including final verification, only the principal branch of the logarithm (k=0) is used.
This ensures that the found solutions correspond exactly to the original equation and not its variations.

To demonstrate the capabilities of the method, we consider in Appendix B a trinomial with
two irrational exponents, one of which is dynamically changed, rotating along the complex circle
(parameter N from 0 to 15):

Nmi
y*+y®*=Q, a=mes (18)
Therefore, even for "exotic" exponents, the method provides a complete answer. If the number of
roots is finite, it provides all roots with any required accuracy. If the number of roots is infinite, the master
method reveals the structure of the roots branch in the complex plane. The fact that one exponent is
imaginary and the other is real does not necessarily mean there will be an infinite set of roots. For example,
with Q = 19333.68, the number of roots is infinite, whereas for Q = 19333.69, it is finite.

4. CONCLUSION AND APPLICATION PROSPECTS

The Master-J method represents a novel approach in the solution of equations with complex
exponents, offering the first complete analytical apparatus for this class of problems. The most
significant achievement of the method is its ability not only to find roots but also to determine the
nature of their set - finite or infinite.

The application prospects of the method cover various fields of science and technology. In
fundamental mathematics, the method opens new possibilities for analyzing the properties of
transcendental equations and their solutions. In physics, it can be applied to solve problems in
quantum mechanics, field theory, and nonlinear dynamics, where equations with complex exponents
may arise. In engineering disciplines, the method can be used to analyze the stability of systems with
fractional derivatives and complex nonlinearities. In economics and finance, the method offers new
approaches to modeling complex processes with nonlinear dependencies.

The universality of the Master-J method and its ability to provide exact analytical solutions
make it a valuable tool for further research. Further development of the method may be directed
towards expanding its application to equations with a larger number of terms, systems of equations,
as well as developing efficient computational algorithms based on it.

Potential applications of the method extend to cryptographic authentication systems. The
method's key advantage lies in the dynamical nature of the solution set: varying the equation's
parameters not only changes the roots but can alter their quantity. This inherent unpredictability,
combined with the analytical intricacy of complex exponents, provides a robust foundation for
challenge-response protocols. Crucially, even with intercepted multiple responses, an adversary
cannot reconstruct the original equation since Viéte's formulas are inapplicable to equations with
complex exponents.

Acknowledgement:
| am grateful to A. D. Alhaidari for comments and suggestions that made significant
improvements on the original manuscript.

APPENDIX A

In this Appendix, we give a 6-step procedure to obtain the Master-J solution of the trinomial
equation py” = q + xy®. Rescaling x and y allow us to take p = g = 1.

Step 1: Preparing the Equation

1

The original equation: y = (1 + rxy®)r

Note: The form 1 + rxy*® (with the factor r) is chosen for universality. It is accomplished by
rescaling the variable x in the original equation y”™ = 1 4+ xy® as x — rx. This allows the master
series to solve various equations including the exponential case when r=0 (y = e*?" =}:5) and the
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1 1
standard exponential when r=0, s=0 (y = e* =§:2).s=0 (y = (1 + rx)7* =L2). y = (1 + rxy®)r =
1:5 This unified approach enables solving many different equations through the same expansion. Note
that one of the roots of entirely different equations coincides with the master series without
modification of either parameters or the independent variable. To single out this particular root as the
root of the same power series across different equations, we expand into a power series not the
expression 1 + xy*®, but the expression 1+ rxy®. This approach will enable us to create a
comprehensive table of equations in the future where one of the roots is represented by a unified
power series. Due to this approach, when using this universal power series to solve equations where
r # 0, we must remember that for solving the familiar form y" = 1 + xy*®, we should use the

1
independent argument as y = (1 + xy®)r =}:;/T.
We take the logarithm of both sides to simplify the power dependence:

Iny = M (19)

This is equivalent to:

In(1 4+ rxy®) = rlny (20)
Step 2: Series Expansion
We use the standard Taylor series expansion of the logarithm:

2 3

ln(1+z)=z—z7+z?—--- (21)

Substitute z = rxy*:
S5\2 5\3
rlny = rxy® — ey | G 7L (22)

L 2 3
Divide by r:
S\2 2 S\3
e e 23)
Step 3: Representing "'y'* as a Power Series
Assume that y can be expressed as a power series in X:

y =1+, ax” (24)
Substitute this series into the equation for Iny:
2
In(1+ Ty aex®) = x(1+ Ty ax®)* === (1 + Ty ax)* + - (25)

Step 4: Expanding Iny and y*
Use the expansion of In(1 + u) for small u:
3

In(1+w)=u-2+% .. (26)
where u = Y°_; a,x* . Then:
Iny = YL, ax” (Zk 1 Qx*)? 42 (Zk 1 QXY = (27)
For y* use the binomial expansion:

=1+ X ax®)s =1+ sy, apx® +—= S(s ) e, apx®)? + - (28)
Step 5: Equatlng Coefficients
Substitute the expansions into the equation:
Vet ax” (Zk 10X )2 4 = x(L 4+ s TRy agx® + )
2
—%(1+252f=1akxk+---)+--- (29)

Comparing coefficients of like powers of x on both sides of the equation yields the
coefficients ay, giving the series:

25-r+1 952—-9sr+2r2+65-3r+1
y=1+x+——x?+ x3 4 -

3!

(30)
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This series coincides with the master series 1:3 , presented in the article:

%:; —1+x+ 1+25—rx2 n (143s-r)(1+3s-27) 3 4o (31)
2 3!

APPENDIX B
Nmi

In this Appendix, we give the Master-J solutions of the equation y* + y® = Q, a = me s for
Q = 888 — 777i and for several values of N

We always transform the original equation into three master equations (see Table 1) and
search for roots in all three selected master equations using the same method. If roots of the master
equation exist, they are determined through a continuous range of base points v(1. Until a formula for
determining the boundaries of this n range is found, we proceed as follows. First, we find the
boundaries of such n values for which the roots are verified in the original equation only through the
principal branch of the complex logarithm. Besides verification, the boundaries can be determined by
the following conditions: divergence of the series if R = |r — s|I"~sl|s|lsl|z|"l > 1, and root
repetition - if previously found roots are obtained at new values of n. In cases where one exponent is
real and the other is purely imaginary (not complex but specifically imaginary), one of the boundaries
might be absent; in this case, we must show several roots from the infinite set starting from the first
one, as they are naturally ordered by modulus.

N=0: Finite Number of Roots with Real Exponents

We transform the equation y™ + y¢ — (888 — 777i) = 0 into master equation (1), see Table 1.

y™ = (888 — 777i) — y© (32)
Apply the master method
py" =q+xy* (33)
L o ln|%|+(arg(%)+2n:n)i
y=v-r:§,z=g,v=e T NEeEZ (34, 35, 36)

Substitute the values from master equation (1) into the master method parameters.
p=1r=mq=888-777i,x=—-1,s=e

n=-1,y=-5.9570521363573448949-6.4972651375071501499i

n=0, y=8.292133856287354895-2.011891769278423965i

n=1, y=-2.3138498235199130471+8.3953403281683450881i

For master equation (2), see Table 1, y¢=% = —1 + Qy~%, the series diverges for all "n"

R = |r —s|I"=sl|s|sl|z|I" = 15877 > 1 (37)
For master equation (4), see Table 1, y¢ = Q — y?, the series also diverges for all "'n"
R = |r —s|I"=sl|s|lsl|z|"l = 33.39 > 1 (38)
N=1: Finite Number of Roots with Complex Exponents
Equation: .
Yl +y°=Q=0 (39)
Transform into master equation (1), see Table 1.
ymet =Q -y (40)
Apply the master method
py" =q+xy° (41)
v ln|%|+(arg(%)+27m)i
y=v-}:§,z=ﬁ,v=e T Mmez (42, 43, 44)
Substitute the values from master equation (1) into the master method parameters.
p=1,r=ne%,q=888—777i,x=—1,s=e (45)
n=20
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In|888-777i|+arg(888—777i)i
i

v=e nes = 3.50197 — 6.44i (46)
i =.05172 +.03178i (47)

Tl
e 8 (888—777i)

y = v-1:5= 39445 — 6.6828i (48)
Recall that 1:5 is a power series with a limited convergence region, not a function working in

the entire complex domain.
2 3

x x
T?:fc:m+x+7(m+25—r)+§(m+3s—r)(m+3s—2r)
. !
+Z—,(m+4s —r)(m+4s—-2r)(m+4s —3r) + - (49)

Now verify the found root in the master equation y™® = Q — y*®
The root y = 3.9445 — 6.6828i, indeed satisfies the original equation. Continue to n=-1.

n=-1
In|888—777i|+arg(888-777)i—2mi
v=e mes = —3.3—.747i (50)
z=—r " = —0018 +.007i (51)
e 8 (888-777i)
y=v-ki=-331-.77i (52)

Verify this root in the master equation y™® = Q — y®

The root y = —3.31 —.77i, indeed satisfies the original equation. Note: numerical results in
this article are rounded for compactness. For thorough verification, use unrounded values.

We must check for roots in all three master equations (1 or 6), (2 or 5), and (3 or 4). Take the
(2) master equation from the original, see Table 1.

ByP~@ = —A—Cy@ (53)
yert=-1+Qy™" (54)
Apply the master method
py" =q+xy° (55)
s ln|ﬂ|+(arg(ﬂ)+2nn)i
y=v-}:§,z=%,v=e e MEZ (56, 57, 58)
Substitute the values from master equation (2) into the master method parameters.
p= 1,r=e—ne%,q =—1,x=888—777i,s=—ne% (59)
n=-2
1n|—1|+arg(—})i—4ni
v=e e-me® = 820.885 + 1955.7i (60)

mi
_ (888-777i)v" T8

—<e—ne?>

y =v-k3=820.8862 + 1955.66671i (62)

This root, when substituted into the original equation, is verified. The roots of the fifth master

equation for n=-3 and n=-4 are also verified. For n=-5 and beyond, the roots are not verified in the

original equation using the principal branch of the logarithm, meaning they are not roots of the
original equation.

= —.000000507 —.0000007i (61)

i

master equation (4) y™® = Q — y®
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This equation yields a single root at n=1. The others will not be verified using the principal
branch of the complex logarithm.

i

yTe® 4 y€ =888 — 777i (63)

Thus, the Master-J method strictly proves that the equation y™® + y¢ = 888 — 777i has
exactly six roots. However, complex exponents alone do not determine the number of roots, as in
algebraic equations with integer exponents. For example, with Q=0.001, this equation has 7 roots.

N=4: Infinite Number of Roots

Consider the case where the number of roots is truly infinite. One exponent is real, the other
is purely imaginary (real part equals zero):

ye+y1ri_Q=0 (64)
Q =888 — 777i (65)
Transform into master equation (1) (see Table 1):
ye=Q—-y™ (66)
Apply the master method
py" =q+xy* (67)
B L B o B 1n|%|+(arg(%)+2nn)i
y—v-r:z,z—ﬁ,v—e T ,NEZ (68, 69, 70)
Substitute the values from master equation (1) into the master method parameters.
p=1r=eq=888—-777i,x =—-1,s =mi (71)
n=20
In|888—777i|+arg(888—7771)i
v=e e = 13.02 — 3.5i (72)
z2=—— = 000617 —.000362i (73)
e(888-777i)
y = v L7 =13.0297 — 3.533i (74)
Then we obtain the second root of the first master equation at n=1:
n=1
y = —6.18497 + 11.99i (75)
Now transform the original equation into master equation (2).
yHe=—1+Qy~* (76)

Here there is only one root:
n=2:y=-14.694474242164030919 - 12.569844656322447529i
The most interesting case is master equation (4)

y™=1-Qy° (77)
Here we obtain an infinite number of roots for "n" from -co to n=1.
n=...
n=-7,y=-.00000041627385621645907377-.00000051405285089600779712i
n=-6,y=-.0000030758708761016074812-.0000037983653530858345787i
n=-5,y=-.000022727782456581737168-.000028066334678185757061i
n=-4,y=-.00016793685957596076555-.00020738372142847451195i
n=-3,y=-.0012408948764620104223-.0015323699516353133188i
n=-2,y=-.0091690418160200212443-.011322767528988349131i
n=-1,y=-.067750498115986331295-.083664550958259858241i
n=0, y=-.50049986982281044678-.61817908960892751252i
n=1, y=-3.5224985137151535401-4.5133344215533415888i
Note that the roots are ordered by modulus.
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