Пашаев Мубариз Башарат оглы,

кандидат сельскохозяйственных наук, Шекинский Региональный Научный Центр НАНА, Pashayev Mubariz B. Sheki Regional Scientific Center of the National Academy of Sciences of the Azerbaijan

СТРУКТУРНЫЕ ЭЛЕМЕНТЫ И ПОКАЗАТЕЛИ УРОЖАЙНОСТИ СОРТА ЛЮЦЕРНА «АРАН» В УСЛОВИЯХ ОРОШЕНИЯ ШЕКИ-ЗАКАТАЛЬСКОГО ЭКОНОМИЧЕСКОГО РАЙОНА STRUCTURAL ELEMENTS AND PRODUCTIVITY INDICATORS OF THE ALFA-ALFA VARIETY 'ARAN' UNDER IRRIGATION CONDITIONS IN THE SHEKI-ZAKATAL ECONOMIC REGION

Аннотация. В статье приведены структурные элементы и показатели продуктивности сорта люцерна Аран в условиях орошения Шеки-Загатальского экономического района. В конце изучения определено, что структурные элементы составили: количество растений в фазе ветвления - 59,0 шт, количество стеблей - 493,0 шт; количество растений в фазе бутонизации - 62,0 шт, количество стеблей - 490 шт; количество растений в фазе начала цветения - 64,0 шт., количество стеблей - 488,0 шт. и количество растений в фазе полного цветения - 64,0 шт, количество стеблей - 488 шт. Анализ показателей продуктивности показывает, что урожайность зеленой массы в 1-м укос составила 225,9 ц/га, сухой массы - 56,5 ц/га; Урожайность зелёной массы во 2-м укос составила 210,2 ц/га, сухой массы - 52,1 ц/га; в 3-м укос урожайность зелёной массы составила 198,6 ц/га, сухой массы - 48,66 ц/га; в 4-м укос урожайность зелёной массы составила 186,5 ц/га, сухой массы - 45,7 ц/га.

Abstract. The article presents the structural elements and productivity indicators of the Aran clover variety under irrigated conditions of the Sheki-Zagatala economic region. At the end of the study, it was determined that the structural elements were: the number of plants in the branching phase - 59.0 number., the number of stems - 493.0 number; the number of plants in the budding phase - 62.0 number., the number of stems - 490 number.; the number of plants in the early flowering phase - 64.0 number, the number of stems - 488 number. and the number of plants in the full flowering phase - 64.0 number, the number of stems - 488 number. Analysis of productivity indicators shows that the yield of green mass in 1 bush was 225.9 c/ ha, dry mass - 56.5 c/ha; The green mass yield in the second bush was 210.2 c/ha, and the dry mass yield was 52.1 c/ha. In the third bush, the green mass yield was 198.6 c/ha, and the dry mass yield was 48.66 c/ha. In the fourth bush, the green mass yield was 186.5 c/ha, and the dry mass yield was 45.7 c/ha.

Ключевые слова: Люцерн, цветок, стебель, зелёная масса, урожайность **Keywords:** Alfa-alfa, flower, stem, green mass, dry mass, yield

Введение. Применение севооборотов является одним из важных мероприятий на современном уровне развития сельского хозяйства. Применение короткооборотных севооборотов считается одним из важных мероприятий по повышению плодородия почв и повышению культуры земледелия [4].

Люцерна по посевным площадям занимает первое место в мире среди злаковых и зернобобовых растений. Посевная площадь люцерны в мировом земледелии составляет 67 млн/га. Возделывают люцерну примерно в 152 странах мира. Посевные площади люцерны в США составляют 30 млн га, в Китае — 15 млн га, в Бразилии — 3,0 млн га. Возделывают это

растение в Индии, Японии, Вьетнаме, Индонезии, Северной Африке, Австралии, Северной и Южной Америке, на Украине, в России, Молдавии, на Северном Кавказе, в Грузии, Азербайджане. Средняя урожайность в мире составляет 14-15 центнеров. В бывшем СССР посевная площадь люцерны составляла 1 млн га, а средняя урожайность — 10 центнеров. В передовых хозяйствах в условиях орошения урожайность зерна составляла 25-30 центнеров, а зеленой массы — 250-300 центнеров [5]. Учитывая плодородие почвы на одном поле, посев культур с коротким севооборотом имеет большое значение для получения высоких урожаев и улучшения качества урожая без увеличения площади посевов [8; 10].

Результаты и их обсуждение. Известно, что длительное возделывание одних и тех же культур на поле отрицательно влияет на продуктивность этих культур и плодородие почвы. В результате снижается устойчивость посаженных растений к болезням и вредителям, они быстро погибают. Кроме того, интенсивно развиваются сорняки, замедляя развитие культурных растений, и поле полностью засоряется сорняками [1].

Для устранения этих показателей возможно повышение продуктивности возделываемых полей и восстановление плодородия почвы путем применения правильно подобранных севооборотов [7; 9]. В результате многолетних исследований установлено, что бобовые растения (люцерна, нут, нут кормовой, горох кормовой) усваивают азот из воздуха через азотобактерины в корнях и обогащают почву азотистыми соединениями. В результате севооборота этих растений доказано, что после люцерны в почве сохраняется 215 кг азота, после гороха кормового – 63 кг, после нута – 72 кг [11].

В настоящее время потребность нашей республики в люцерне полностью удовлетворяется за счёт местного импорта. Это означает, что в стране ежегодно остаются миллионы долларов средств. Выращивание этого стратегического растения в стране позволяет не только удовлетворить потребности животноводства в кормах за счёт внутренних ресурсов, но и сохранить в стране значительные средства. В нашей республике имеются очень плодородные почвенно-климатические условия для возделывания люцерны. Наиболее благоприятными регионами считаются равнинные и предгорные районы республики. Эти плодородные условия позволяют в короткие сроки добиться значительных успехов в удовлетворении потребностей животноводческих хозяйств в кормах [3].

В результате проведённых исследований установлено, что в Шеки-Загатальском регионе растения люцерны в первый год своей жизни накапливают 33-38 центнеров сухих корневых остатков в слое почвы толщиной 0,5 см. Также, в результате перегнивания корневых остатков, накопленных в почве однолетними кормовыми травами, увеличивается количество питательных веществ и гумуса – основного компонента почвы. Гумус, богатый питательными веществами, считается основным показателем потенциального плодородия почвы [9].

Вегетационный период люцерны обычно длится 160-180 дней. Фенологические фазы следующие: всходы, стеблеобразование, бутонизация, цветение и созревание семян. Всходы появляются через 8-10 дней после посева, первый простой лист после семядолей образуется через 3-4 дня, а первый тройчатый лист — через 5-7 дней после появления всходов. После появления 3-5 листьев начинается ветвление, а также развиваются боковые побеги [12, 13].

В Азербайджане основу кормовой базы животных в частных и фермерских хозяйствах составляют грубые корма (сухая трава, солома) и концентрированные корма. Удельный вес грубых кормов в составе кормовых рационов составляет 80-85%, остальные 15-20% приходятся на концентрированные корма. Люцерна является основой грубых кормовых растений. Люцерна возделывается на 386 тысячах гектаров земель во всех регионах Азербайджана [6].

Зелёная масса люцерны, сено, сухая трава и сенная мука с удовольствием поедаются скотом и птицей. Зелёная масса люцерны богата белком, нормированным по аминокислотам для организма животных и птиц, различными микро- и макроэлементами, витаминами, минеральными солями. В 1 кг зелёной массы люцерны содержится 0,20-0,30 г, сухой травы 0,60-0,70 г, кормовая единица 130-180 г, переваримого протеина 9,0-16 г, кальция 1,5-2,5 г, фосфора 15-30 мг, каротина. В 1 кг сенной муки, приготовленной по современной технологии, содержится 150-200 г протеина и 200-300 мг каротина [2].

Агротехнические мероприятия, проводимые на опытном поле, проводились в соответствии с рекомендациями Министерства сельского хозяйства Азербайджанской Республики для соответствующих регионов республики.

Согласно методике исследований, для основных фаз развития растений определялись динамика высоты, структурные элементы, количество растений на 1 м² площади в различные фазы развития и показатели продуктивности. Таким образом, по результатам исследований, для определения структурных элементов растения с площади 1 м² вручную собирались и разделялись на листовую и стеблевую части, результаты представлены в таблице 1.

 Таблица 1.

 Структурный анализ сорта люцерна «Аран» по фазам развития

	1.7 71					
Фазы	Фаза развития	Количество	Количество	Количество	Количество	Высота
	период	растений на	стеблей на	ветвей на	листьев на	растения
	формировани	1 m ²	1 m ²	стебле	стебле	
	R					
	ШТ	ШТ	ШТ	ШТ	ШТ	СМ
ветвление	25-28.05	59,0	493,0	12,0	46,0	52,0
бутонизация	05-09. 06	62,0	490,0	14,0	73,0	72,0
начало	15-18.06	64,0	488,0	15,0	92,0	85,0
цветения						
полное	22-28.06	64,0	488,0	15,0	88,0	91,0
цветение						

Анализ таблицы 1 показывает, что по мере развития растения, его численность на 1 м^2 площади, увеличивается, а количество стеблей на одном стебле, наоборот, уменьшается. Так, в фазу ветвления количество растений составило 59,0 шт, количество стеблей -493,0 шт; в фазу бутонизации количество растений составило 62,0 шт, количество стеблей -490 шт; в фазу начала цветения количество растений составило 64,0 шт., количество стеблей -488,0 шт; в фазу полного цветения количество растений составило 64,0 шт, количество стеблей -488 шт.

Таким образом, наибольшее количество растений было в фазе начала цветения (64 шт) и полного цветения (64 шт), а количество стеблей — в фазе ветвления (493,0 шт) и полного цветения (490,0 шт).

Для определения урожайности измеряли и убирали $1 \, \mathrm{m}^2$ площади с 3 точек по диагонали опытного участка. Полученные данные были сгруппированы, переведены в гектары и приведены в рисунок 2.

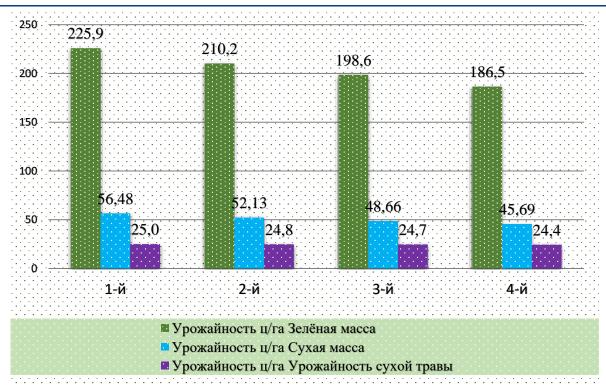


Рисунок 2. Показатели урожайности сортов люцерны сорта «Аран»

Анализ рисунок 2 показывает, что показатели продуктивности растений неодинаковы в зависимости от укосов. Так, в 1-м укосе урожайность зелёной массы составила 225,9 ц/га, сухой масса — 56,48 ц/га; во 2-м укосе урожайность зелёной массы составила 210,2 ц/га, сухой масса — 52,13 ц/га; в 3-м укосе урожайность зелёной массы составила 198,6 ц/га, сухой масса — 48,66 ц/га; в 4-м укосе урожайность зелёной массы составила 186,5 ц/га, сухой масса — 45,69 ц/га.

Таким образом, по результатам исследований, лучшая урожайность зелёной и сухой травы получена в 1-м и 2-м укосах.

Заключение. 1. Количество растений в фазе ветвления -59,0 шт, количество стеблей -493,0 шт; количество растений в фазе бутонизации -62,0 шт, количество стеблей -490 шт; количество растений в фазе начала цветения -64,0 шт, количество стеблей -488,0 шт; количество растений в фазе полного цветения -64,0 шт, количество стеблей -488 шт.

- 2. В 1-м кусте урожайность зеленой массы составила 225,9 ц/га, урожайность сухой массы -56,48 ц/га; во 2-м кусте урожайность зеленой массы составила 210,2 ц/га, урожайность сухой массы -52,13 ц/га; В 3-м кусте урожайность зелёной массы составила 198,6 ц/га, сухой массы -48,66 ц/га; в 4-м кусте урожайность зелёной массы составила 186,5 ц/га, сухой массы -45,69 ц/га.
- 3. Таким образом, наибольшее количество растений получено в фазу начала цветения (64 шт) и полного цветения (64 шт), количество стеблей в фазу ветвления (493,0 шт) и полного цветения (490,0 шт), а лучшая зелёная и сухая травяная масса получена на 1-й и 2-й делянках.

Список литературы:

1. Агамаммедов Т. Люцерна – ценное зелёное удобрение и отличный предшественник. 7 октября 2022 г., Азертадж.

- 2. Аз. Институт агролесоводства и пастбищ. Также справочник / Баку: Маариф. 1992. 95 с.
- 3. Алиев, Ч.С., Косаев Э.М., Ахмедова Н.М.. Рекомендации по возделыванию люцерны с использованием современных технологий. Книга. Издательство «Наука и образование». Баку. 2015. 24 с.
- 4. Рзаев М.Ю., Абдуллаева З.М., Мамедова П.А., Кязымов Г.А [и др.]. Влияние коротких чередующихся и непрерывных посевов на урожайность зелёной массы бобовых культур // Гянджинский государственный университет. Международная научная конференция «Актуальные проблемы современных естественных и экономических наук». Часть III. Гянджа: 2022. С. 348-350.
 - 5. Технология возделывания люцерны. Агроинфо. agro.gov.az. 2022
 - 6. «stat.gov.az» 2023
- 7. Мамедов Г.Ю., Исмаилов М.М. Растениеводство. Учебник / Баку: Восток-Запад. 2012.-356 с.
- 8. Мамедов Т.Н. Азербайджанские бобовые кормовые растения. Учебное пособие / Баку: Маариф. 2012.-112 с.
- 9. Юсифов М.А., Аскеров А.Т., Агаев Ф.Н. Влияние почвенной засухи на формирование органов и продуктивность растений овощного гороха // Аграрный научный центр. Аграрная экономика. Научно-практический журнал. Баку, 2020. № 4 (34), с. 114–122.
 - 10. Степанов В.Н., Киселёв. Основы агрономии. Учебник / Баку: Маариф. 1996. 482 с.
- 12. Yılmaz M., Albayrak S. 2016. Isparta Ekolojik Koşullarında Bazı Yonca (Medicago sativa L.) Çeşitlerinin Ot Verim ve Kalitelerinin Belirlenmesi. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 25 (1), p 42-47.
- 13. Zhang Y.M., Zhang H.M., Liu Z.H [et.al]. The Wheat NHX Antiporter Gene TaNHX2 Confers Salt Tolerance in Transgenic Alfa-alfa By İncreasing The Retention Capacity of Intracellular Potassium. Plant Mol. 2015. Biol., 87 (3), p-317-27.
- 14. Zhao Y., Ma, W., Wei, X., Long, Y. Su, M [et. al]. Identification of exogenous Nitric Oxide-Responsive miRNAs from Alfa-alfa (Medicago sativa L.) under drought stress by high-throughput sequencing. -2020. Genes, 11 (30), p-122. DOI: 10.3390/genes11010030.