Тинякова Анна Олеговна, магистрант, Национальный государственный университет физической культуры, спорта и здоровья имени П. Ф. Лесгафта

АНАЛИЗ ДИНАМИКИ БИОХИМИЧЕСКИХ МАРКЕРОВ У ВЫСОКОКВАЛИФИЦИРОВАННЫХ ЛЫЖНИКОВ-ГОНЩИКОВ, ТРЕНИРУЮЩИХСЯ В РАЗНЫХ КЛИМАТИЧЕСКИХ УСЛОВИЯХ

Аннотация. В ходе 5-недельного эксперимента с участием 9 высококвалифицированных лыжников-гонщиков мужского пола было выявлено, что тренировки в условиях околополярной гипоксии носят схожий характер биохимических адаптационных сдвигов с тренировками, проводимыми в условиях горной гипоксии среднегорья.

Ключевые слова: Биохимическая адаптация, околополярная гипоксия, горная гипоксия.

В адаптационных способностей последние голы анализ организма высококвалифицированных лыжников-гонщиков во время тренировочного процесса приобретает все большее значение, так как основной целью спортивной подготовки считается достижение высоких спортивных результатов при сохранении здоровья атлета. Контроль состояния здоровья требует адекватных и информативных методов. Для контроля самочувствия требуется использование достоверных И информативных метолов. Биохимические методы в значительной мере удовлетворяют этим требованиям и применяются для оценки воздействия физических нагрузок на спортсменов. В контексте нашего исследования углубленное лабораторное исследование поможет сравнить работоспособность спортсменов и сделать вывод о целесообразности проведения тренировочных мероприятий в условиях околополярной гипоксии взамен привычной горной гипоксии. Предпосылками к поиску альтернативных вариантов местоположения тренировочных баз внутри России стали санкции и нежелание Европейских государств принимать делегации Российских сборных команд на тренировочные мероприятия.

Методы и организация исследования. Рандомизированное контролируемое исследование продолжительностью 5 недель проводилось в несколько этапов со сдачей необходимых анализов и тестов г. Москва на базе ФМБА России на платной основе. В исследовании принимали участие высококвалифицированные (МС, МСМК) лыжникигонщики мужского пола в возрасте 24-29 лет (рост $184,5\pm2,1$ см, масса тела $79,4\pm1,8$ кг, индекс массы тела 23.3±0.3). Участники были распределены в контрольную и опытную группу. Контрольная группа (п=4) проводила тренировочный сбор в Валь-Де-Фьемме, место проведения гонок на ОИ 2026, – средняя температура +3 градуса, высота 1211 метров, вторая группа – опытная (n=5) в районе г. Алдан, Якутия (субарктический климат) – средняя температура -22, высота 750-800 метров. Тренировочные планы у групп были с небольшими расхождениями, однако имели схожую интенсивность и объем и преследовали одинаковые цели: 1. повышение аэробных возможностей, максимального потребления кислорода и лактатного порога; 2. адаптация организма к пониженному содержанию кислорода с целью повышения кислородной ёмкости крови и устойчивости к гипоксии. До и после тренировочных мероприятий спортсмены сдавали клинический и биохимический анализы крови натощак и после дня отдыха.

Результаты исследования и их обсуждение. В условиях тренировок на высоте около 800 метров над уровнем моря показатели гемоглобина и гематокрита вырастают незначительно, а уровень гематологической массы крови остается на прежних значениях (1-

2%) [1]. Однако, в условиях околополярной гипоксии отмечается больший прирост всех показателей кислородтранспортной функции: НВ (гемоглобин) – прирост на 4%, что является выше среднестатистических показателей влияния 800-метровой высоты, а значит мы можем предположить, что больший прирост происходит именно за счет влияния околополярной гипоксии; уровень гематокрита вырос на 2,5%, что отвечает на одну из задач тренировочного сбора – увеличение кислородной емкости крови. Сравнительная динамика показателей представлена в таблице 1. Также увеличение количества красных кровяных телец влечет повышение вязкости крови. Также уровень общего белка может способствовать небольшому росту вязкости плазмы, поскольку больше белков увеличивают осмотическое давление, и может изменяться объём жидкости внутри сосудов. Отмечается повышение показателя общего белка на 2,8%. Однако, стоит отметить, что при небольшом повышении уровня общего белка, мы видим снижение уровня мочевины на 3,2% в среднем. Что говорит о том, что у спортсменов данной группы был хороший уровень гидратации, а функции почек остались на должном уровне. Уровень общего белка наряду с мочевиной также является диагностическим критерием при утомлении. Показатели обеих групп не выходят за рамки физиологических норм, а значит можно сделать вывод о правильности дозирования нагрузки.

Основными показателями для обсуждения являются значения гемоглобина и гематокрита, отражающие состояние кислородтранспортной функции организма. Так, например, спустя 23 дня тренировочного сбора произошли схожие изменения показателя Нь: опытная группа показала прирост +4%, а контрольная группа +3,07%. Небольшое различие между результатами связано с механизмом воздействия околополярной гипоксии на организм спортсмена — в северных условиях возрастает потребление тканями кислорода за счёт повышения энергетического обмена для поддержания температуры тела и адаптации к холоду. Также сильно рознятся изменения показателей гематокрита (+2,5% у опытной группы и +0,07% у контрольной групп), который используется для оценки состояния кровообращения в микроциркулярном русле, а значит отражает уровень доставки кислорода к тканям. Чем выше показания гематокрита, тем лучше способность крови транспортировать кислород к тканям.

Таблица 1 Сравнительная линамика показателей крови

Показатель	Опытная группа до, n=5	Опытная группа после, n=5	Контрольная группа до, n=4	Контрольная группа после, n=4
Мочевина, (ммоль/л)	4,36 ± 1,00	4,22 ± 0,71 (-3,2%)	$4,23 \pm 0,44$	4,48 ± 0,33 (+5,91%)
Обший белок (г/л)	$72,23 \pm 1,49$	74,35± 1,13 (+2,8%)	74,74 ± 1,56	72,80± 0,81 (-2,6%)
Hb (г/л)	$162,00 \pm 2,57$	168,6 ± 2,70 (+4,0%)	$171,00 \pm 3,30$	176,25± 2,17 (+3,07%)
Ht (%)	$41,56 \pm 1,78$	42,67 ± 1,86 (+2,5%)	$45,21 \pm 2,28$	45,24 ± 1,93 (+0,07%)
RBC (*10 ¹² /л)	$5,06 \pm 0,22$	5,28 ± 0,34 (+4,3%)	$5,71 \pm 0,44$	5,84 ± 0,33 (+2,28%)
МСV (фл)	$89,47 \pm 0,79$	90,81± 0,80 (+1,7%)	$90,39 \pm 0,76$	91,25± 0,54 (+0,95%)

Полученные результаты свидетельствуют о схожести биохимических адаптационных сдвигов, вызываемых разными видами гипоксии: полярной и горной, в организмах

высококвалифицированных лыжников-гонщиков мужского пола. Проведенное исследование позволяет сделать вывод о целесообразности использования тренировочных баз, расположенных в Российской Федерации в зоне субарктического климата взамен горным регионам Европейских государств.

Заключение. Комплекс биохимических маркеров является эффективным инструментом для вопросов, касающихся планирования последующих тренировочных сборов и выбора их местоположения. Околополярная гипоксия вызывает схожие биохимические адаптации, что и горная гипоксия среднегорья.

Практические рекомендации, разработанные на основе исследования, включают: регулярный биохимический и клинический контроль здоровья и работоспособности спортсменов, сочетание околополярной гипоксии с условиями низкогорья.

Список литературы:

- 1. Wilber RL, Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc 39 (9):1610-1624, 2007
- 2. Рыбина, И.Л. Биохимические аспекты оценки адаптации организма высококвалифицированных спортсменов циклических видов спорта к напряженным физическим нагрузкам / Рыбина И. Л // Федер. науч. центр физ. культуры и спорта. Москва, 2016. С. 48.
- 2. Helms, E.R. Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training / E.R. Helms, A.A. Aragon, P.J. Fitschen // Journal of the International Society of Sports Nutrition. -2014. Vol. 11. P. 20.
- 3. Owens, D.J. Vitamin D and the athlete: current perspectives and new challenges / D.J. Owens, R. Allison, G.L. Close // Sports medicine. 2018. Vol. 48, No. 1. P. 3-16.
- 4. Самошкин, А.А. Адаптация и адаптированность спортсменов к физическим нагрузкам / А.А. Самошкин // В сборнике: Наука и образование в жизни современного общества: сборник научных трудов по материалам Международной научно-практической конференции: в 14 томах. 2015. С. 134-137.