Направление: Технические науки

Шамаев Александр Александрович,

Студент 3-го курса, группы С-ОГР-22, Северо-Восточный Федеральный университет им. М.К. Аммосова, город Якутск

ОСОБЕННОСТИ ИЗВЛЕЧЕНИЯ АЛМАЗОВ

Аннотация: Данная статья посвящена обзору особенностей извлечения алмазов, их физическим свойствам, а также основным методам обогащения полезных ископаемых, терминологии, показателей и схем в обогащении алмазосодержащих песков. В ходе работы рассмотрены научно-исследовательские и реферативные работы по данной теме.

Ключевые слова: Алмаз, обогащение, алмазосодержащие пески, открытый способ, флотация, сепарация.

Актуальность: Актуальность добычи алмазов обусловлена их широким применением в различных сферах деятельности человека. В ювелирной индустрии алмазы остаются одним из самых красивых и дорогих драгоценных камней, которые идут на создание ювелирных изделий и украшений. В промышленности алмазы используются как техническое сырьё. Из-за своей необычной твёрдости алмаз прочно занял место в промышленности, ни одно современное производство не обходится без алмазных инструментов: свёрл, фрез, резцов, шлифовальных кругов, стеклорезов и т. д.

Алмаз – самый дорогой драгоценный камень.

Месторождения алмазов подразделяются на две большие группы: **коренные** (первичные), связанные с магматическими горными породами, и **россыпные** (вторичные), возникшие при разрушении коренных месторождений.

- Коренными месторождениями алмазов являются кимберлитовые трубки.
- Россыпи подразделяются по геолого-генетическому типу: речные (делювиальные, пролювиальные, аллювиальные) и морские (прибрежно-морские).

Особенности извлечения алмазов

Технология извлечения алмазов, как и других полезных минералов, зависит от характера связи алмазов с минеральными ассоциациями пород и от свойств рудных и вмещающих минералов.

Как правило, коренных месторождениях кристаллы алмазов весьма прочно связаны с природными минералами. В россыпях эти связи менее прочные и чаще алмазы находятся почти в свободном состоянии (мало связанном) состоянии.

Обычно технология извлечения алмазов включает следующие этапы:

- 1. Дезинтеграция (дробление) исходного сырья для высвобождения кристаллов алмазов от связи с другими материалами.
- 2. Первичное обогащение дезинтегрированной смеси с целью получения богатых по содержанию минералов тяжелой фракции концентратов при высоком извлечении в них алмазов.
 - 3. Доводку первичных, грубых концентратов и выделение природных алмазов.
- 4. Очистку поверхности выделенных кристаллов и классификацию их по классу крупности.

При обогащении кимберлитов, песков россыпных месторождений и конгломератов применяются, в основном, одни и те же процессы. Принципиальная разница — часто лишь в подготовке исходного сырья к обогащению.

Извлечение алмазов отличается от извлечения других полезных ископаемых целым рядом важных особенностей.

- Прежде всего, крайне низкое содержание алмазов в сырье.
- Большая ценность алмазов требует особой заботы по обеспечению максимально высоких извлечений кристаллов из руды.
- Большой диапазон крупности зерен от долей миллиметра, до кристаллов, измеряемых сантиметрами (при соблюдении условий извлечения его в ненарушенном, природном состоянии). Выполнение условий по максимальному извлечению разных по крупности кристаллов алмазов предопределяет необходимость применения стадиальных схем.
- Необходимость обеспечения максимальной сохранности кристаллов алмазов, в технологическом процессе обогащения («щадящие» способы и режимы дробления, измельчения, дезинтеграции и транспортировки рудных минералов).
- Средняя плотность алмазов ($3400-3550 \text{ кг/м}^3$), почти равная плотности породных материалов.
- Очень высокая степень обогащения. Из чрезвычайно бедного сырья необходимо получить чистый, мономинеральный алмазный концентрат.
 - Отсутствие надежных методов контроля и оценки содержания алмазов в продуктах.

Свойства алмаза.

Алмаз состоит примерно на 96-99,8% из углерода, 0,2–0,3% составляют примеси химических элементов таких как азот, кислород, алюминий, бор, кремний, марганец, медь, железо, никель, титан, цинк и др. Из за примесей алмазы имеют какой-либо оттенок. В природе существуют алмазы, ярко окрашенные в желтый, оранжевый, зеленый, синий, голубой, розовый, коричневый, серый и черный цвета. Бесцветные алмазы встречаются редко.

Состав. Минерал, кристаллическая полиморфная модификация самородного углерода, по блеску, красоте и твердости превосходящий все минералы.

Физические свойства:

- а) По шкале Мооса относительная твердость алмаза равна 10, самая высокая как среди природных, так и среди так среди искусственных материалов,в1000 раз превышаюя твердость кварца и в 150 раз корунда,
 - б) Излом раковистый,
 - в) Плотность алмаза 3,4-3,55 г/см3,
 - г) Блеск сильный, от алмазного до жирного,
- д) Высокий показатель преломления (от 2,417 до 2,421) и сильная дисперсия (0,0574) обуславливают яркий блеск и разноцветную "игру" ограненных ювелирных алмазов, называемых бриллиантами.
 - е) Полупроводник.
 - ж) Алмаз не магнитен.
- з) Под действием рентгеновских, катодных и ультрафиолетовых лучей большинство алмазов начинает светиться (люминесцировать) голубым, зеленым, розовым и другими цветами.
- к) Алмаз прилипает к некоторым жировым смесям, но при этом не смачивается водой (гидрофобность,) что широко используется в липкостно-жировой технологии обогащения алмазов на обогатительных фабриках.
- л) На воздухе алмаз сгорает при 850-1000° С с образованием СО2; в вакууме при температуре свыше 1500° С переходит в графит.
 - м) Хорошо проводит тепло
 - н) Не растворяются в кислотах и царской водке.
 - о) Крупность алмазов измеряется в каратах: один метрический карат равен 0,2 г

Алмазы встречаются в коренных (кимберлиты) и россыпных месторождениях, а так же в уникальном импактном месторождение (Попигайский кратер) находящегося на территории Республики Саха (Якутия).

Терминология, показатели и схемы в обогащении алмазосодержащих песков:

Обогащение полезных ископаемых— совокупность процессов первичной обработки минерального сырья, имеющая своей целью отделение всех ценных минералов от пустой породы, а также взаимное разделение ценных минералов.

Переработка полезных ископаемых на обогатительных фабриках включает ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей.

По своему назначению процессы переработки полезных ископаемых разделяют на подготовительные, основные (обогатительные) и вспомогательные (заключительные).

При разнообразии применяемых методов обогащения все они основаны на использовании различий в присущих минералам физических и химических свойств.

Таблица 1 Основные метолы обогашения ископаемых:

Осповные методы	ооогащения исконастых.
Метод обогащения	Свойство разделяемых минералов, по которым производится обогащение
Рудоразборка	Цвет, блеск, прозрачность или свечение
Гравитационные	Плотность
Флотация	Смачиваемость (естественная или создаваемая регентами)
Флотогравитация	Смачиваемость, создаваемая реагентами и плотность
Магнитная сепарация	Магнитная восприимчивость
Электрическая сепарация	Электрические
Радиометрические методы обогащения	Радиоактивные или сила излучения
Обогащение по трению	Коэффициенты трения
Обогащение по упругости	Упругость
Подготовка руд перед другими методами обогащения путем избирательного дробления, измельчения, истирания или нагревания	Прочность.

В результате обогащения полезного ископаемого (алмазоносных песков) в качестве конечного готового продукта получается — концентрат (алмазы), и одновременно отходы — хвосты, в которые переходит большая часть пустой породы

К *подготовительным* относятся процессы: дробления и измельчения, при которых достигается раскрытие минералов в результате разрушения сростков полезных минералов и пустой породы, а также процессы грохочения и классификации, применяемые для разделения по крупности полученных при добыче и измельчении механических смесей.

Задача подготовительных процессов – доведение минерального сырья до крупности, необходимой для последующего обогащения.

К *основным обогатительным* процессам относятся те физические и физикохимические процессы разделения минералов, при которых полезные минералы выделяются в концентраты, а пустая порода в хвосты. В случае если после первого приема обогащения песков, концентрат еще недостаточно богат (получен черновой концентрат или промежуточный продукт, сокращено — **промпродукт**, а хвосты еще недостаточно бедны. В этих случаях операция обогащения повторяются и носят названия *перечестных*, и *контрольных* если применяются к хвостам предыдущей операции обогащения (пример контрольная РЛ сепарация хвостов ЦД).

Процесс обогащения характеризуют следующие основные технологические показатели: выход, извлечение и массовая доля, эффективность обогащения.

Выход продукта — Выход продукта по отношению к исходному питанию (степень сокращения) определяется следующей формулой

$$\Upsilon_{n} = \frac{Qn}{Q1} \tag{1}$$

где, Q_n – масса полученного продута (масса по сухому);

 Q_1 – масса исходного питания (масса по сухому).

Извлечение — показатель процесса обогащения, характеризующими его техническое совершенство, являются *степень извлечения* E_n полезного компонента, переводимого в концентрат, и его содержание в концентрате β_n .

Общее извлечение определяется следующей формулой.

$$E_{n} = \frac{Pn}{P1} = \frac{Qn \cdot \beta n}{Q1 \cdot \beta 1} = \frac{n \cdot \beta n}{\beta 1}$$
 (2)

где, β n – содержание в продукте расчетного компонента (в концентрате и т.д.);

β1 – содержание в исходном питании расчетного компонента (в песках.);

 $P_n = Q_n \cdot \beta_n$ масса расчетного компонента в полученном продукте (концентрате);

 $P_1 = Q_1 \cdot \beta_1$ — масса расчетного компонента в исходном питании (песках).

Массовая доля ценного компонента в продукт обогащения (содержание) — это отношение массы ценного компонента к массе продукта, в котором он находится.

Список литературы:

- 1. Дронова Н. Д., Кузьмина И. Е. Характеристика и оценка алмазного сырья М.: МГГУ, 2004
 - 2. Васильев Л.А. Алмазы, их свойства и применение М.: Недра, 1983
 - 3. Вестник АЛРОСА, № 1 (186) 2012, стр. 14
 - 4. Бриллиантовый Веер. Эксперт, №3 1998, стр. 31-34.
 - 5. Отчет компании «АЛРОСА»
 - 6. Елагина Е.Н., Открытие трубки «Мир» // Мирнинский рабочий. 1986.
- 7. Наумов, В.Г. Геолого-географические исследования и поиски полезных ископаемых в Западной части Якутской АССР // История исследований полезных ископаемых экспедициями АН ССР. 1966.
 - 8. Файнштейн Г.Х., За нами встают города. Иркутск, 1988, 304 с.
 - 9. Харькив А.Д., Зинчук Н.Н., Зуев В.М. История алмаза. М.: Недра, 1997. 601 с.
- 10. Юзмухаметов Р.Н., Из истории открытия Якутской алмазоносной провинции // Известия Алтайского Государственного Университета, 2009 г., №4, т. 3, с. 281-287.