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Аннотация. Предлагается гибридная модель, объединяющая теорию Кано и машинное 

обучение для анализа цифровых следов и приоритизации характеристик продукта с учетом 

сегментов и изменения ожиданий; обсуждаются риски и способы валидации эффекта. 
Abstract. The paper proposes a hybrid model combining Kano theory and ML to analyze 

digital footprints and prioritize product features across segments and shifting expectations; it also 

covers risks and ways to validate impact. 
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Цифровая экономика изменила не только скорость принятия решений, но и саму 

природу управленческого знания. Там, где раньше доминировали опыт, интуиция и линейные 

экстраполяции, сегодня действует иная логика: продукт, сервис и бренд непрерывно 

отражаются в данных – в кликах, паузах, возвратах, отказах, комментариях, маршрутах по 

интерфейсу, повторных визитах и незаметных микродействиях, которые пользователь не 

проговаривает, но которыми «пишет» поведенческий текст. На уровне деклараций бизнес 

давно перешёл к data-driven подходу, однако на уровне управленческих моделей сохраняется 

разрыв: богатство цифровых следов не превращается автоматически в богатство 

интерпретации. Данные собираются, визуализируются и агрегируются, но решения по 

инновациям по–прежнему часто принимаются в логике упрощённых показателей 

вовлечённости или в «позднем» режиме – когда рынок уже проголосовал рублём. 

Центральная проблема состоит в том, что классические модели оценки ценности 

функций продукта и качества инноваций создавались для среды, где эмпирическая база 

добывается опросом, интервью или наблюдением малых выборок, а сами модели 

предполагают относительно редкие циклы обновления. В цифровой среде эмпирика 

становится непрерывной, многоканальной и, что особенно важно, неоднородной по своей 

природе: часть сигналов эксплицитна и выражена словами, часть имплицитна и выражена 

поведением, а часть носит контекстный характер (устройство, время, сценарий, канал 

привлечения). В результате менеджер сталкивается с парадоксом: данных много, но они плохо 

«пришиваются» к управленческим категориям, которые были придуманы для анкеты и фокус-

группы. Цель этой статьи – предложить теоретический каркас гибридной системы поддержки 

инновационных решений, способной соединить теорию Кано как язык ценности и 

удовлетворённости с методами машинного обучения как инструментом масштабной 

интерпретации цифровых следов. 
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Важное уточнение: речь идёт не о замене управленческой теории алгоритмами и не о 

попытке «автоматизировать стратегию». Напротив, предметом анализа становится 

архитектура перевода теоретических категорий в операциональные признаки данных и 

обратно – в интерпретируемые инсайты, которые сохраняют смысл для менеджера. Такая 

система должна быть двуязычной: понимать язык данных и язык ценности. 

Теоретический ландшафт, на фоне которого возникает эта задача, хорошо показывает 

траекторию эволюции управленческого мышления. Модели типа importance-performance 

(важность–удовлетворённость) исходят из предположения, что «важность» и «качество 

исполнения» линейно складываются в приоритет улучшений. Парадигма Jobs to be Done, 

напротив, смещает акцент с характеристик продукта на жизненный контекст и цель 

пользователя, предлагая мощный инструментарий для формулирования проблем, но не всегда 

давая строгую шкалу для количественной приоритизации функций и их динамики. На этом 

фоне модель Кано сохраняет редкое для гуманитарно-ориентированных концепций качество: 

она допускает алгоритмизацию без потери ключевого смысла. 

Логика Кано построена на том, что удовлетворённость пользователя не является 

линейной функцией «количества фич». Одна и та же функция может давать разные эффекты: 

какие-то свойства воспринимаются как базовые и почти не повышают удовлетворённость, но 

отсутствие вызывает раздражение; какие-то свойства дают пропорциональный эффект «чем 

лучше, тем больше довольны»; а какие-то создают неожиданную радость – восхищают, хотя 

их отсутствия обычно не замечают. В классической формулировке это фиксируется через 

категории базовых, производительных и привлекательных (восхищающих) характеристик, а 

также через варианты «безразличных» и «обратных» свойств. Важнее даже не перечень 

категорий, а аксиоматика: биполярность реакции (удовлетворённость/неудовлетворённость), 

асимметрия ценности и принцип миграции категорий во времени. То, что вчера восхищало, 

завтра становится «нормой», а затем – базовым ожиданием. Динамика миграции превращает 

модель Кано из статического классификатора в теорию эволюции пользовательских 

ожиданий, и именно этот момент особенно созвучен цифровой среде с её быстрыми циклами. 

Если сравнивать с Jobs to be Done, модель Кано уступает в глубине объяснения 

мотивации, но выигрывает в формализуемости. Категории Кано дискретны, а шкалы реакции 

биполярны, что облегчает постановку задачи для машинного обучения: либо как 

классификацию, либо как восстановление латентных факторов, соответствующих типам 

удовлетворённости. Если сравнивать с importance–performance, Кано лучше работает там, где 

нелинейности критичны: функция может иметь низкую декларируемую «важность», но при 

этом быть базовой (пока всё работает – её не называют важной, но сбой разрушает опыт). 

Именно такие нелинейности и провоцируют систематические ошибки в «простых» метриках 

продукта: рост NPS может не объяснить, почему падает удержание, а рост функциональности 

– почему усиливается раздражение. 

Однако классическая модель Кано, будучи сильной как теория, испытывает 

методологические ограничения в цифровой реальности. Во‑первых, запаздывание: 

традиционный сбор данных через опросы и интервью редко совпадает по времени с моментом 

возникновения эмоции и контекста использования. Во‑вторых, субъективность и эффект 

рационализации: пользователь часто не способен корректно объяснить, что именно вызвало 

удовлетворённость, особенно если речь об имплицитных ожиданиях. В‑третьих, 

трудоёмкость: построение анкеты Кано, сбор выборки, сегментация и интерпретация – 

дорогостоящий цикл, который плохо масштабируется на десятки функций и быстрые релизы. 

Наконец, сама анкета Кано хорошо работает с изолированными характеристиками, но хуже – 

с комплексными сценариями, где ценность возникает на стыке нескольких элементов и 

контекста. 
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Эти ограничения не отменяют модель, но подсказывают направление её расширения: 

смещение эмпирической базы от редких опросов к цифровым следам пользователя. Цифровые 

следы – это не просто «большие данные», а следы разных типов, каждый из которых по-своему 

связан с категорией удовлетворённости. Эксплицитные следы – отзывы, обсуждения в 

сообществах, обращения в поддержку, тексты в чатах, реакции в социальных сетях – по 

смыслу близки к тому, что анкета Кано пытается добыть напрямую: пользователь вербализует 

отношение к функции, часто указывая и объект, и оценку, и контекст. Имплицитные следы – 

кликовые траектории, глубина прокрутки, задержки, частота возвратов, последовательности 

действий, поведенческие паттерны отказа, изменения в скорости выполнения задачи – не 

содержат слов, но содержат структуру опыта. Они ставят более сложную задачу: тип 

удовлетворённости приходится выводить опосредованно, через признаки, которые являются 

не оценкой, а симптомом. 

Именно здесь возникает идея гибридной аналитической системы: связать 

теоретические категории Кано с цифровыми следами так, чтобы каждая категория получила 

«операциональное представительство» в данных, а данные, в свою очередь, не превращались 

в набор бессмысленных корреляций. Сердцевина концепции – перевод между уровнями: от 

теории к меткам и кластерам, от сигналов к интерпретируемым выводам. 

Категории Кано можно переосмыслить как целевые переменные в задачах обучения с 

учителем, где модель получает примеры функций и их принадлежность к типу (базовая, 

производительная, привлекательная и т. д.), либо как семантические кластеры в обучении без 

учителя, где алгоритм обнаруживает устойчивые группы паттернов и затем эти группы 

интерпретируются в терминах теории. Оба подхода не взаимоисключающие: в зрелой системе 

они дополняют друг друга. Обучение с учителем даёт управляемость и метрики точности, но 

требует разметки; обучение без учителя помогает обнаружить неожиданные структуры, но 

требует строгой процедуры интерпретации и проверки. 

Концептуальный пайплайн такой системы в наиболее общем виде начинается со сбора 

и сегментации цифровых следов. Важно подчеркнуть, что сегментация здесь – не 

декоративный этап, а элемент теории: ожидания и «тип удовлетворённости» зависят от 

контекста. Одна и та же функция может быть базовой для опытного пользователя и 

привлекательной для новичка, производительной для одного сегмента и безразличной для 

другого. Поэтому сегментация должна опираться не только на социально–демографические 

признаки, но и на поведенческую зрелость, частоту использования сценариев, источник 

трафика, устройство, региональный контекст, тариф/план и другие переменные, 

определяющие «норму ожиданий». 

Далее следует интеллектуальная обработка, и здесь проявляется принципиальная 

двуканальность. Эксплицитные данные разумно анализировать методами NLP: извлекать 

упоминания функций, объектов интерфейса и сценариев, проводить тематическое 

моделирование, а также связывать оценочные выражения с конкретными аспектами продукта. 

Одной «тональности текста» обычно недостаточно: пользователь может писать негативно о 

ситуации, но позитивно о функции, или наоборот. Поэтому ключевую роль играет аспектно-

ориентированный анализ тональности, который позволяет связать эмоцию не с текстом в 

целом, а с конкретной характеристикой. Это критично для логики Кано, поскольку категория 

относится к функции, а не к общему настроению. 

Имплицитные данные требуют других инструментов: анализ временных рядов, 

последовательностей действий, моделирование воронок, выделение типовых траекторий, а 

также кластеризация пользователей и сценариев по поведенческим паттернам. Здесь полезны 

методы, которые умеют «понимать» порядок и контекст событий: от классических марковских 

моделей и скрытых марковских процессов до современных подходов на основе эмбеддингов 
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последовательностей. Смысл не в модности архитектуры, а в том, чтобы восстановить 

структуру опыта: где возникает трение, где пользователь ускоряется, где возвращается, где 

бросает задачу, какие микроошибки повторяются. 

Третий шаг – семантическое сопоставление выявленных паттернов с категориями Кано. 

Это самый теоретически чувствительный участок системы, потому что здесь легко скатиться 

в грубую подгонку: «если жалуются – значит базовая», «если хвалят – значит 

привлекательная». На практике сопоставление требует многомерного критерия. Базовые 

характеристики часто проявляются через всплески обращений при сбоях, рост отказов после 

регрессий, раздражение в текстах поддержки при исчезновении «само собой разумеющегося». 

Производительные – через устойчивую связь качества исполнения с измеримыми 

показателями удовлетворённости и успеха сценария: чем быстрее, точнее, удобнее, тем 

больше завершений, повторов, рекомендаций, конверсия или удержание. Привлекательные – 

через асимметричный эффект: при наличии возникает диспропорциональный рост позитивных 

реакций или вовлечения в определённые сценарии, при отсутствии же не фиксируется 

симметричного падения, пока пользователь не узнает о возможности. 

Чтобы избежать натяжек, система должна удерживать в явном виде критерии принятия 

решения о категории, а не только выдавать метку. Это означает, что вывод должен 

сопровождаться «обоснованием» в терминах наблюдаемых сигналов: какие именно паттерны 

поведения и какие именно фрагменты текста, с какой устойчивостью и на каких сегментах, 

привели к классификации. Тем самым теория Кано не исчезает, а превращается в 

интерпретационный слой, дисциплинирующий статистику. 

Завершающий шаг – формирование динамической карты приоритетов и 

интерпретируемых инсайтов для менеджера. В классической практике карта приоритетов 

строится как список функций с их типом и рекомендациями. В гибридной системе карта 

должна быть живой: показывать миграцию категорий во времени, различия по сегментам, 

чувствительность к изменениям продукта, а также неопределённость вывода. Иначе говоря, 

менеджеру нужна не просто «категория», а прогноз последствий действий: что будет, если 

улучшить базовую функцию; какой прирост даст усиление производительной; как проверить, 

является ли привлекательная функция действительно «вау‑фактором» или эффектом новизны; 

не превращается ли она уже в ожидание. 

Отдельного разговора заслуживают методологические нюансы, без которых система 

будет теоретически красивой, но практически бесполезной. Во‑первых, проблема редких 

категорий. «Восхищающие» функции в реальных данных встречаются нечасто: их либо мало, 

либо они быстро перестают быть редкими, либо их эффект проявляется в узких сегментах. Это 

создаёт дефицит размеченных примеров и дисбаланс классов. Поэтому для таких случаев 

концептуально оправдано использование few-shot и zero-shot подходов, где модель опирается 

на перенос знаний, семантические представления и качественные описания функций. Здесь 

важно не впасть в иллюзию универсальности: перенос возможен, но его нужно калибровать и 

проверять на домене конкретного продукта, иначе «вау-эффект» будет подменён 

стилистическими маркерами текста. 

Во‑вторых, связка тональности и аспектов должна быть не декоративной, а 

структурной. Для теории Кано критично не просто знать, что пользователь недоволен, а 

понимать, чем именно: скоростью, надёжностью, прозрачностью, стоимостью, эстетикой, 

предсказуемостью результата. Одна и та же эмоция может относиться к разным аспектам и 

вести к разным управленческим решениям. Негатив к базовой функции – сигнал риска, негатив 

к привлекательной – часто сигнал неверной коммуникации или несоответствия ожиданий, а 

не «провала основы». Поэтому аспектный анализ здесь не украшение, а механизм привязки 

эмоции к объекту. 
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В‑третьих, необходимо учитывать миграцию категорий. Если система обучается на 

исторических данных и не обновляет представление, она будет «консервировать» прошлые 

ожидания. Теоретически это означает, что модель должна быть чувствительна к дрейфу 

концепта: распределение реакций меняется, и та же функция может переехать из 

привлекательных в производительные, а затем в базовые. Практически это ведёт к 

требованиям мониторинга качества, периодической переоценки, а иногда и к явному вводу 

времени как переменной, влияющей на классификацию. 

Сильная сторона предлагаемой гибридной архитектуры – возможность верификации, 

но и здесь нельзя ограничиться привычной для data science проверкой метрик. Валидация 

должна идти по двум траекториям: точность классификации и управленческая релевантность 

инсайтов. Первая проверяется стандартно: разметка экспертами, межэкспертное согласие, 

оценка качества модели по метрикам вроде F₁, precision/recall, калибровка вероятностей, 

устойчивость к смене сегментов. Вторая – сложнее: даже идеально классифицированная 

категория может оказаться бесполезной, если она не приводит к решениям, улучшающим 

продукт. Поэтому необходимы прикладные проверки: A/B-эксперименты, измерение эффекта 

от приоритизации, сравнение с контрольной группой решений, принятых без системы, а также 

ретроспективная проверка предсказаний на последующих релизах. В определённом смысле 

конечная метрика – это не точность «угадать категорию», а способность предсказывать, какие 

инвестиции в функции приведут к росту удовлетворённости, удержания и ценности для 

пользователя. 

Но чем мощнее система, тем важнее критика её ограничений. Первый риск – 

«прокрустово ложе» теории, когда сложный спектр эмоций, ожиданий и контекстов насильно 

втискивается в несколько категорий. Кано полезна как инструмент, но не исчерпывает 

психологию пользователя. В гибридной системе этот риск усиливается: алгоритм любит 

чёткие метки и уверенные границы, а реальность любит смешанные состояния. Отсюда 

следует методологический вывод: система должна уметь выражать неопределённость, 

допускать смешанные принадлежности и хранить признаки, позволяющие спорить с 

классификацией. Слишком «чистые» результаты обычно подозрительны. 

Второй риск – технологический, связанный с bias. Цифровые следы отражают не 

«пользователя вообще», а того, кто оставляет следы в данном канале и в данной конфигурации 

продукта. Активные пользователи оставляют больше данных и тем самым получают больше 

«голоса»; новые пользователи могут быть недопредставлены; часть сегментов выражает себя 

преимущественно через поддержку, часть – через соцсети, часть – молчит и уходит. Алгоритм, 

обученный на такой картине, может закрепить несправедливость: усиливать функции для уже 

«слышимых» групп и игнорировать тихие, но важные сегменты. Поэтому в гибридной модели 

необходимы процедуры балансировки, проверки справедливости по сегментам, а также 

осознанная политика по тому, какие данные считаются репрезентативными. 

Третий риск – управленческий и, возможно, самый коварный: синдром «чёрного 

ящика». Когда решения становятся продуктом сложной модели, менеджер может потерять 

стратегическое видение и превратиться в оператора рекомендаций. Теоретически это означает 

деградацию ответственности: если решение принято «по модели», то виноватой оказывается 

модель, а не управленец. Практически это ведёт к тому, что организация перестаёт учиться – 

потому что обучение заменяется делегированием. Противоядие здесь не в отказе от 

алгоритмов, а в требовании интерпретируемости и встраивании системы в управленческий 

цикл так, чтобы она была оппонентом, а не авторитетом. Менеджер должен получать не только 

ответ, но и основания, альтернативы и сценарные последствия. 

Этический контекст в подобной системе не является приложением «для галочки», 

потому что цифровые следы – это всегда следы человека, пусть и обезличенные. 
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Ответственность начинается с принципов минимизации данных и целевого использования: 

собирать не «на всякий случай», а под конкретные управленческие гипотезы; хранить 

ограниченно; обеспечивать безопасность и соблюдение требований регулирования. Но этика 

не исчерпывается приватностью. Вторая проблема – манипуляция восприятием: если мы 

научились точно понимать, какие функции вызывают восхищение, появляется соблазн 

проектировать не ценность, а зависимость, подменять долгосрочное благо краткосрочной 

стимуляцией. Третья – прозрачность. В системах поддержки инноваций прозрачность (в 

широком смысле explainable AI) становится не просто удобством, а этическим императивом: 

человек должен иметь возможность понять, почему система рекомендует то или иное, на каких 

данных основан вывод, где границы применимости и какие альтернативные объяснения 

существуют. 

В заключение стоит подчеркнуть: гибридная модель, объединяющая теорию Кано и 

машинное обучение, не является очередной «надстройкой над аналитикой». Она претендует 

на роль теоретического моста между классическим менеджментом и data science, где теория 

задаёт смысловые координаты, а алгоритмы обеспечивают масштаб и чувствительность к 

динамике. Такой мост особенно важен в эпоху, когда инновации часто рождаются не в виде 

единичного прорыва, а в виде серии микроулучшений и переосмыслений пользовательского 

опыта, и когда цена ошибки в приоритизации возрастает из-за скорости рынка. 

Перспективы развития этой концепции лежат в нескольких направлениях. Во‑первых, 

культурно-зависимые версии модели: ожидания «базового» и «восхищающего» различаются 

между рынками, а цифровые следы отражают нормы поведения, которые нельзя переносить 

механически. Во‑вторых, интеграция с теориями открытых инноваций и экосистемного 

развития продукта, где ценность создаётся не только внутри интерфейса, но и в сети 

партнёров, API, интеграций, сообществ и контента. В‑третьих, формирование стандартов 

интерпретируемости для управленческих систем: не общих деклараций, а конкретных 

требований к обоснованию рекомендаций, к мониторингу дрейфа, к проверкам 

справедливости, к процедурам валидации управленческого эффекта. В этом смысле 

предложенный каркас может служить фундаментом для прикладного алгоритма 

диссертационного исследования: он задаёт строгую рамку того, как теория становится 

данными, а данные – решением, не разрушая смысл по пути. 
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