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 СОВРЕМЕННЫЕ ТЕХНОЛОГИИ АККУМУЛЯТОРНОГО ХРАНЕНИЯ 

ЭНЕРГИИ И ИХ ИНТЕГРАЦИЯ В ЭНЕРГОСИСТЕМЫ 

С ВОЗОБНОВЛЯЕМЫМИ ИСТОЧНИКАМИ 
  MODERN BATTERY ENERGY STORAGE TECHNOLOGIES  

AND THEIR INTEGRATION INTO POWER SYSTEMS WITH 

 RENEWABLE ENERGY SOURCES 
  

Аннотация. В статье рассматриваются современные технологии аккумуляторного 

хранения электрической энергии – свинцово-кислотные, литий-ионные, никель-кадмиевые и 

натрий-серные аккумуляторы – и их роль в интеграции возобновляемых источников энергии 

в электроэнергетические системы. Показано, что системы накопления энергии обеспечивают 

балансирование активной и реактивной мощности, стабилизацию напряжения и частоты, а 

также повышают устойчивость и гибкость электрических сетей. Для оценки их влияния на 

режимы работы сети используется модель «система хранения энергии. 

Abstract. The article examines modern battery energy storage technologies–lead-acid, 

lithium-ion, nickel-cadmium, and sodium-sulfur batteries – and their role in integrating renewable 

power generation into electric power systems. It is shown that battery energy storage systems provide 

active and reactive power balancing, voltage and frequency stabilization, and enhance the flexibility 

and dynamic stability of power grids. An ESS–inverter–grid model is considered to analyze the 

impact of energy storage systems on grid operation. 
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возобновляемая энергетика, интеграция в энергосеть. 
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Введение. Рост глобальной трансформации энергетического сектора повысил спрос на 

технологии хранения электрической энергии, которые в контексте развития «умных сетей» 

приобретают решающее значение для функционирования энергосистем. Неравномерная 

выработка энергии от солнечных и ветряных электростанций, которая растет в последнее 

время, требует создания механизмов накопления излишков электроэнергии и ее подачи в сеть 
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в часы пикового спроса. Такой подход позволит выровнять баланс между производством и 

потреблением электроэнергии, а также повысить гибкость энергоснабжения [1-3]. 

Современные системы хранения электроэнергии включают электрохимические, 

электромагнитные, механические, химические и термические технологии и представляют 

собой комплексные решения, объединяющие аппаратные средства и интеллектуальные 

алгоритмы управления. Такие системы обеспечивают оптимизацию потоков мощности, 

сглаживание графиков нагрузки и перенос энергии из периодов низкого спроса в периоды 

высокой нагрузки, что существенно упрощает интеграцию распределённых источников 

генерации в электрическую сеть [4, 5]. 

Литий-ионные аккумуляторы занимают ведущие позиции в области хранения 

электрической энергии, находя применение как в энергосистемах, так и в солнечных 

установках, рассчитанных на индивидуальных потребителей [6, 7]. Эти устройства 

аккумулируют энергию в химической форме и при необходимости преобразуют её в 

электрическую. Они способствуют регулированию частоты, стабилизации напряжения, 

обеспечению резервной мощности, повышают динамическую устойчивость сети и 

способствуют снижению выбросов парниковых газов [8, 9]. В рамках данного исследования 

проводится анализ различных аккумуляторных технологий с детальным описанием 

нескольких типов. Также рассматриваются проточные аккумуляторные системы, одной из 

которых посвящён отдельный раздел. 

В статье рассматриваются следующие технологии аккумуляторов: свинцово-

кислотные, литий-ионные, никель-кадмиевые и натрий-серные.  

Аккумуляторные технологии сохранение энергии. Свинцово-кислотные 

аккумуляторы (Pb–acid) остаются одной из наиболее распространённых технологий 

стационарного хранения энергии благодаря простоте эксплуатации и сравнительно низкой 

стоимости. Они способны работать в режиме глубокого разряда, однако их эксплуатационные 

характеристики в значительной степени зависят от температуры окружающей среды. Принцип 

работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях между 

электродами из диоксида свинца и металлического свинца, погружёнными в электролит на 

основе серной кислоты [10-12]. 

Литий-ионные аккумуляторы состоят из графитового анода, катода на основе литий-

металлического оксида и органического электролита с растворенной литиевой солью. 

Токосъёмники в этих элементах выполняются из меди и алюминия. Принцип работы связан с 

переносом литиевых ионов между электродами при процессе зарядки и разрядки. Эта технология 

характеризуется высокой энергетической плотностью, долгим сроком службы и отсутствием 

эффекта памяти. Однако её недостатки включают высокую стоимость, чувствительность к 

высоким температурам и необходимость использования защитных цепей [13].  

Никель-кадмиевые (Ni-Cd) аккумуляторы известны своей надёжностью и 

долговечностью, что делает их подходящими для использования в сложных условиях. Их 

конструкция включает катод из оксигидроксида никеля, анод из кадмия и щелочной 

электролит на основе гидроксида калия. Эти аккумуляторы могут заряжаться повышенными 

токами, но их функциональность ограничивается эффектом памяти, который снижает ёмкость 

при частичных циклах разряда [14]. 

Натрий-серные батареи (NaS) характеризуются высокой энергетической плотностью, 

что делает их перспективными для применения в системах накопления электрической энергии 

[15]. В конструкции таких батарей натрий используется в качестве анода, сера – в качестве 

катода, а керамический электролит β-алумината одновременно выполняет функции ионного 

проводника и сепаратора. Для стабильной работы NaS-батарей требуется поддержание 

рабочей температуры в диапазоне 300-350 °C, обеспечивающей жидкое состояние активных 
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материалов и низкое внутреннее сопротивление. Это позволяет достигать высокой 

мощностной отдачи и длительного ресурса по числу циклов, однако необходимость 

высокотемпературного режима увеличивает стоимость системы и снижает общую 

энергетическую эффективность [13, 16]. 

Интеграция возобновляемых источников энергии в энергосистемы. 

Интеграция возобновляемых источников энергии в энергосистемы сопряжена с рядом 

технических и экономических вызовов, обусловленных переменчивым характером генерации 

солнечной и ветровой энергии. Изменения метеорологических условий приводят к колебаниям 

объемов выработки электроэнергии, что обуславливает необходимость применения 

аккумуляторных систем хранения энергии для их сглаживания и компенсации [17]. 

В автономных энергосистемах использование аккумуляторных батарей является 

обязательным условием обеспечения бесперебойного электроснабжения, тогда как в сетевых 

энергосистемах они способствуют повышению надежности электроснабжения и более 

эффективной интеграции распределенной генерации. Кроме того, аккумуляторные системы 

выполняют функции стабилизации напряжения за счет управления реактивной мощностью, а 

также поддержания частоты сети посредством балансировки активной мощности. 

Моделирование интеграции электрохимических систем хранения энергии (ЭХСХЭ) с 

энергосетями через воздушные и кабельные линии электропередачи базируется на системах 

уравнений потоков мощности и динамических уравнений состояния аккумуляторных батарей. 

Данная модель ((формулы (1) и (2)) учитывает воздействие ЭХСХЭ на распределение 

активной и реактивной мощности, параметры напряжения в узлах сети и показатели 

динамической устойчивости. Благодаря силовому преобразователю ЭХСХЭ обеспечивают 

возможность независимого регулирования обеих составляющих, что значительно повышает 

эффективность управления рабочими режимами энергосети [18].  

𝑃𝑖
ген − 𝑃𝑖

наг + 𝑃𝑖
ЭХСХЭ = ∑ |𝑉𝑖||𝑉𝑗|(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)𝑁

𝑗=1                      (1) 

𝑄𝑖
ген − 𝑄𝑖

наг + 𝑄𝑖
ЭХСХЭ = ∑|𝑉𝑖||𝑉𝑗|(𝐺𝑖𝑗𝑐𝑜𝑠𝜃𝑖𝑗 + 𝐵𝑖𝑗𝑠𝑖𝑛𝜃𝑖𝑗)

𝑁

𝑗=1

                       (2) 

где: 

• – представляют собой суммарные значения активной и реактивной 

мощности всех генераторов, подключенных к i-му узлу.; 

• – характеризуют активную и реактивную мощности потребителей в 

данном узле; 

• – учитывают режим работы ЭХСХЭ: при процессе заряда эти 

параметры имеют значение, соответствующее потреблению, а при разряде – значение, 

отражающее генерацию. 

Правая часть уравнений описывает электромагнитное взаимодействие узла i с другими 

узлами сети. Модули напряжений, |𝑉𝑖||𝑉𝑗| и а также разница фаз 𝜃𝑖𝑗 определяют условия 

передачи мощности между этими узлами. Параметры 𝐺𝑖𝑗, представляющие собой элементы 

матрицы проводимостей сети, формируются на основе электрических характеристик 

воздушных и кабельных линий электропередачи.  

Модель передачи мощности в системе ESS–преобразователь–сеть представлена 

следующим образом: система хранения энергии (ESS) подключается к электрической сети 

через двунаправленный инвертор напряжения (VSI), который отвечает за управление активной 

и реактивной мощностью. Соединение с сетью происходит через элемент реактивности, такой 

как дроссель или индуктивность линии, что обеспечивает требуемые параметры тока и 

стабильную работу инвертора. 
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В условиях синусоидального установившегося режима и при игнорировании активных 

потерь мощности взаимодействие между инвертором и сетью описывается соответствующими 

математическими выражениями (3) и (4) [19-20].    

𝑃 =
𝐸𝑉

𝑋
𝑠𝑖𝑛𝛿                                                                     (3) 

𝑄 =
𝐸

𝑋
(𝐸 − 𝑉𝑐𝑜𝑠𝛿)                                                                  (3) 

где: 

• P– активная мощность, передаваемая между ESS и сетью; 

• Q – реактивная мощность, обмениваемая с сетью; 

• E – действующее значение выходного напряжения инвертора; 

• V – действующее значение напряжения электрической сети в точке 

подключения; 

• X – эквивалентное реактивное сопротивление соединительного звена (включая 

реактор преобразователя и параметры ВЛЭП/КЛЭП); 

• 𝛿– угол мощности между векторами напряжений инвертора и сети. 

В данной модели активная мощность в первую очередь определяется углом, что создает 

аналогию с принципом передачи мощности в синхронных генераторах. Регулируя фазовый 

угол выходного напряжения инвертора относительно напряжения сети, энергосистемы 

хранения (ESS) способны плавно переключаться между режимами потребления энергии 

(зарядка) и генерации (разрядка).  

Таким образом, можно заключить, что аккумуляторные технологии играют ключевую 

роль в развитии «умных сетей», способствуя эффективной интеграции возобновляемых 

источников энергии, поддержанию баланса мощности и повышению стабильности 

энергосистем. При этом каждая из технологий характеризуется своими особенностями в 

отношении плотности энергии, стоимости и условий эксплуатации. 
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