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Аннотация: В известное математическое описание дискретной линейной оптимальной 
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Введение и постановка задач 

 Математический аппарат теории линейной оптимальной фильтрации динамических 

систем с 1961 года [1] успешно используется в технических и других науках и постоянно 

совершенствуется – это, например, работы [2, 3, 4]. Но если для математиков приоритетными 

задачами являются новые математические описания с доказательствами, в частности, условий 

существования и единственности решений, то для инженеров необходима информация о 

потенциальных технических эффектах, доставляемых использованием тех или иных 

математических описаний для решения технических задач. Конкретный результат такого 

использования – это, например, встраиваемое в техническую систему программное 

обеспечение, улучшающее функционирование этой системы в смысле заданного критерия: 

другими словами, «повышающего её искусственный интеллект» в смысле этого критерия. В 

частности, для инерциальной навигационной системы такое улучшение заключается в 

повышении её точности. А значит, для инженеров-разработчиков актуальной задачей является 

получение информации о потенциальном количественном эффекте повышения точности 

системы, который могут обеспечить алгоритм и программа, разработанные на основе 

математической теории. Цель данной работы - обратить внимание инженера на подход оценки 

количественного эффекта повышения точности системы от использования процедуры 

линейной оптимальной фильтрации для практически удобного дискретного варианта 

математического описания состояния этой системы. И далее учитывать полученный результат 

для поддержки принятия решения о целесообразности реализации указанной процедуры. 

В статьях [5, 6] рассмотрены аналогичные задачи для непрерывного варианта 

математического описания состояния динамической системы и её измерений.  

В тексте данной статьи с целью сокращения многократного повторения словосочетания 

«дискретная линейная оптимальная фильтрация» используется одно слово «фильтрация», 

которым подразумевается указанное словосочетание. А также с целью сокращения введены 

термины: 1) априорная информация - совокупность переменных и параметров, входящих в 

математическое описание состояния системы; 2) измеряемая информация - совокупность 

переменных и параметров, входящих в математическое описание измерений для системы; 3) 

фильтрованная информация - совокупность переменных, получаемых на выходе процедуры 

фильтрации путём обработки априорной и измеряемой информации. 

В тексте статьи используются сокращения: 

СВ - случайная величина, 
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СП - случайная переменная, 

МО - математическое ожидание, 

ЦСВ - центрированная случайная величина,  

ЦСП - центрированная случайная переменная, 

СКО - среднее квадратическое отклонение. 

В тексте статьи используются обозначения: 

D - количество дискретных равноотстоящих друг от друга моментов времени на всём 

интервале времени функционирования системы; 

N - количество переменных состояния системы (переменных априорной информации); 

n - количество измеряемых переменных для системы; 

L - количество компонент погрешностей модели системы; 

M - количество компонент погрешностей модели измерений; 

Yk
i, yk

i, ηk
i   - дискретные значения соответственно СП, МО, СКО переменных состояния 

системы, i = 1,N̅̅ ̅̅̅,  k = 0,D̅̅ ̅̅̅;   
Zk

j, zk
j, ζk

j - дискретные значения соответственно СП, МО, СКО измеряемых 

переменных для системы, j = 1,n̅̅ ̅̅ ,  k = 1,D̅̅ ̅̅̅;  
Xk

i, xk
i, χk

i - дискретные значения соответственно СП, МО, СКО фильтрованных 

переменных системы, i = 1,N̅̅ ̅̅̅,  k = 0,D̅̅ ̅̅̅.  
Дискретный вариант в задаче фильтрации удобен тем, что системный и измерительный 

белые шумы характеризуются корреляционными моментами или, в частных случаях, 

дисперсиями, а не интенсивностями, как в непрерывном варианте. Но если в качестве 

исходной информации о динамической системе используется математическое описание в виде 

непрерывных дифференциальных уравнений, то их следует привести к дискретной форме, а 

затем применить дискретный вариант фильтрации. 

Поставим три задачи:  

1) дискретизация непрерывных дифференциальных уравнений состояния системы, то 

есть приведения их к эквивалентным разностным уравнениям; 

2) определение оценок переменных состояния системы, названных фильтрованными 

переменными; 

3) ввод критериев эффекта фильтрации и математическое описание их определения, что 

представляет новизну данной статьи. 

1. Математическое описание для задачи 1 

Исходная динамическая система описывается непрерывным матричным линейным 

обыкновенным дифференциальным уравнением – это модель априорной информации: 

 
dY

dt
 = aY+ u + bF,  Y(t0)=Y0 , tϵ[t0;tE],                                              (1.1) 

где Y – переменная состояния - матрица размера Nх1, компоненты которой есть СП Yi ,  i = 

1, N̅̅ ̅̅ ̅ ;  a, u, b - детерминированные матрицы соответственно размеров NxN, Nx1, NxL, 

компоненты которых - это в общем случае функции времени; F - матрица размера Lx1, 

компоненты которой есть ЦСВ Fl, l= 1, L̅̅ ̅̅̅ , характеризующие погрешности априорной 

информации, то есть заданной модели системы в виде (1.1);  t0 , tE - соответственно начальный 

и конечный моменты времени функционирования системы; Y0 - значение переменной Y в 

момент времени t0. 

Исходная измеряемая информация описывается непрерывной матричной 

зависимостью - это модель измеряемой информации: 

Z = c(y+gФ),                                                                 (1.2) 

где Z - измеряемая переменная - матрица размера nx1, компоненты которой есть СП Zj , j= 1, 𝑛̅̅ ̅̅̅;  
c, g - детерминированные матрицы соответственно размеров nxN, NxM, причём компоненты 
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матрицы c - постоянные величины, а компоненты матрицы g - это в общем случае функции 

времени; Ф - матрица размера Mx1, компоненты которой есть ЦСВ Фm, m= 1,M̅̅ ̅̅ ̅  , 

характеризующие погрешности измеряемой информации, то есть заданной модели измерений 

для системы в виде (1.2); y - MO переменной состояния системы - марица размера Nx1, 

компоненты которой yi, i= 1, N̅̅ ̅̅ ̅ характеризуют точные значения переменных состояния, 

которые генерирует система измерений с указанными выше погрешностями.  

Перед проведением процедуры дискретизации следует, используя непрерывную 

модель системы вида (1.1), правильно определить величину шага Δt по времени, с которым 

должно быть осуществлено численное решение системы дифференциальных уравнений 

методом Эйлера с требуемой точностью. Для этого может быть использована следующая 

процедура: необходимо получать численные решения системы (1.1), варьируя величину шага  

Δt от наибольшего до реального наименьшего и при каждой итерации осуществлять 

вычисление усреднённых по времени модулей разностей полученных решений (переменных 

состояния) между решениями на предыдущем и последующем моментами времени при 

данном шаге. И эти итерации реализовывать до тех пор, пока указанные разности не станут 

реальным «машинными нулями», которые приняты за допустимые абсолютные погрешности 

переменных состояния. После достижения этих «машинных нулей» можно допустить, что 

найден допустимый в смысле точности шаг решения системы (1.1). Тогда количество дискрет 

по времени можно определить по формуле 

D = (tE -t0)/Δt.                                                               (1.3) 

После процедуры определения допустимого шага решения системы следует при 

найденном шаге решить эту систему и затем определить необходимые для дальнейшего 

наибольшие по модулям значения математических ожиданий переменных состояния и их 

первых производных по времени на интервале времени функционирования этой системы, то 

есть реализовать процедуры: 
ẏBi = sup{|ẏi (t)|i =1, N̅̅ ̅̅ ̅};                                                        (1.4) 

yB
i =sup{|yi(t)|,i =1, N̅̅ ̅̅ ̅}.                                                        (1.5) 

Согласно выражения (1.3), каждый последующий момент времени связан с 

предыдущим зависимостью: 

tk = tk-1+Δt, k= 1,D.̅̅ ̅̅ ̅                                                            (1.6) 

Интегрируя уравнение (1.1) методом Эйлера на интервале времени [tk-1;tk], получаем: 
 

Y(tk)-Y(tk-1) =[a(tk-1)Δt]Y(tk-1)+u(tk-1)Δt+[b(tk-1)Δt]F,  k= 1,D,̅̅ ̅̅ ̅                         (1.7) 
 

где Y(tk-1), Y(tk) - значения матричной переменной соответственно в моменты времени tk-1, tk; 

a(tk-1), u(tk-1), b(tk-1) - значения функций a(t), u(t), b(t) в момент времени tk-1. Введём 

обозначения: 

Yk-1 = Y(tk-1),  Yk = Y(tk);                                                   (1.8) 

ak-1 = a(tk-1)Δt, uk-1 = u(tk-1)Δt, bk-1 = b(tk-1)Δt;                                (1.9) 

Zk =Z(tk), yk  =y(tk), gk =g(tk).                                            (1.10) 
 

Перенесём в правую часть уравнения (1.7) слагаемое Y(tk-1) и используем обозначение 

Yk-1  из (1.8) и обозначение ak-1 из  (1.9), а затем введём обозначение: 
 

Ak-1 = ak-1 + E,                                                               (1.11) 
 

где E - единичная матрица размера NxN. Использовав обозначения (1.8) - (1.11), запишем для 

уравнения (1.1) и зависимости (1.2) их дискретные эквиваленты: 
 

Yk = Ak-1Yk-1 + uk-1+ bk-1F,                                                    (1.12) 

Zk = c(yk +gkФ).                                                            (1.13) 
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В дальнейшем допускаем некоррелированность компонент матрицы F с компонентами 

матрицы Ф и введём обозначения для матриц корреляционных моментов компонент каждой 

их этих матриц:  

W = M[FFT],  V = M[ФФT],                                                  (1.14) 

где через M[*] обозначена операция MO, а символом «T» обозначена операция 

транспонирования матрицы. Использовав обозначения (1.14), составим выражения для матриц 

корреляционных моментов слагаемых bk-1F, gkФ: 

Bk-1 = bk-1WbT
k-1 ,                                                          (1.15) 

Gk  =  gkVgT
k .                                                             (1.16) 

где матрица W имеет размер LxL, а матрица V имеет размер MxM. В частности, при условии 

некоррелированности компонент Wlm матрицы W и некоррелированности компонент Vlm 

матрицы V эти матрицы являются диагональными, компоненты которых равны дисперсиям 

погрешностей соответственно априорной и измеряемой информации, то есть: 

Wlm = Wll  = (φl)2 при l=m, Wlm = 0 при l ≠ m;   l,m =1, 𝐿;̅̅ ̅̅ ̅                      (1.17) 

Vlm = Vmm  = (ψm)2 при l=m, Vlm = 0 при l ≠ m;    l,m =1,𝑀̅̅ ̅̅ ̅̅ ,                   (1.18) 

где φl,  ψm  - СКО соответственно для ЦСВ Fl, Фm. 

2. Математическое описание для задачи 2  

Используем предыдущие результаты первого пункта и метод выполнения 

математического описания для дискретного варианта процедуры фильтрации [2, с.194-202]. 

Это математическое описание представляет собой приведённую ниже последовательность 

использования матричных уравнений и зависимостей при сохранении обозначений 

затематического описания для задачи 1. 

1. Имеем разностное уравнение для определения предварительной погрешности 

фильтрованной информации: 

rk = Ak-1Rk-1AT
k-1 + Bk-1,                                                   (2.1) 

где здесь и далее k= 1, 𝐷̅̅ ̅̅ ̅  и задано начальное условие 

R0 = M[Y0YT
0],                                                           (2.2) 

AT
k-1, YT

0 - транспонированные матрицы от матриц Ak-1, Y0; матрица Bk-1 определена формулой 

(1.15); 

2. Используем зависимость: 

qk = crkcT + Gk,                                                           (2.3) 

где cT - транспонированная матрица от матрицы c, матрица Gk определена формулой (1.16); 

3. Определяем обратную матрицу от матрицы  qk: 

Qk =(qk)-1 ;                                                                  (2.4) 

4. Определяем «коэффициент усиления» фильтра: 

pk  = rkcTQk;                                                              (2.5) 

5. Используем вспомогательную зависимость для определения погрешностей 

фильтрованной информации: 

   hk = E  - pkc;                                                               (2.6)  

6. Используем основную зависимость для определения погрешностей фильтрованной 

информации: 

Rk  = hkrkhT
k + pkcpT

k,                                                      (2.7) 

где hT
k, pT

k - транспонированные матрицы от матриц hk,  pk; 

7. Используем разностное уравнение для определения вспомогательной переменной: 

Hk = Ak-1Xk-1 + uk-1                                                                                 (2.8) 
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с начальным условием  

X0 = M[Y0] = y0,                                                      (2.9) 

где y0 - МО СП Y в момент времени t=t0;  

8. Используем зависимость для определения фильтрованной переменной, то есть 

оценки переменной состояния Yk: 

Xk = Hk + pk(Zk - cHk),                                                  (2.10) 

где Zk - переменная имитации измерений для предварительного численного моделирования 

процедуры фильтрации или измеряемая переменная для реальной процедуры фильтрации, 

содержащая точные значения yk переменных состояния и погрешности измерений gkФ. 

3. Математическое описание для задачи 3 

Эффект процедуры фильтрации заключается в повышении точности априорной 

информации о системе при наличии измеряемой информации. Обработка переменных 

априорной и измеряемой информации процедурой фильтрации должна давать возможность 

получать фильтрованные переменные состояния системы точнее априорных переменных этой 

системы. При этом очевидно, что получить «точнее» переменные состояния системы можно 

лишь, располагая более точной измеряемой информацией по сравнению с априорной, не 

смотря на то, что измеряемая информация имеет свои погрешности. А следовательно, 

погрешности измеряемой информации должны быть меньше погрешностей априорной при 

корректном условии их сравнения. Далее также очевидно, что фильтрованная информация 

должна быть точнее измеряемой за счёт процедуры фильтрации. Эти, на первый взгляд, 

тривиальные замечания следует учитывать при планировании использования процедуры 

фильтрации на качественном уровне. А конкретно, следует корректно  сравнить погрешности 

априорной информации о системе с погрешностями измеряемой информации для системы и, 

если это сравнение будет в пользу измеряемой информации, то имеет смысл разрабатывать 

программное обеспечение для процедуры фильтрации вначале на стадии численного 

моделирования для определения потенциального количественного эффекта от этой 

процедуры, после чего принимать решение о целесообразности реализации этой процедуры 

для эксперимента. 

Для решения задачи определения количественного эффекта фильтрации проведём 

следующие преобразования. Заметим, что разностные уравнения (1.12), (2.8) и зависимости 

(1.13), (2.10) содержат СП Yk , Zk , Hk , Xk . Заметим также, что уравнение (1.12) содержит 

слагаемые bk-1F, а зависимости (1.13) содержат слагаемые gkФ. Указанные слагаемые - это 

дискретные значения центрированных случайных функций bF, gФ соответственно для tk-1, tk, 

а поэтому их MO есть нули, то есть: 

M[bk-1F] = 0, M[gkФ] = 0.                                                    (3.1) 

Введём обозначения для MO перечисленных выше переменных: 

Yk-1 = M[Yk-1],  yk = M[Yk],zk = M[Zk],  hk =M[Hk],  xk = M[Xk].              (3.2)                                   

Использовав эти обозначения и равенства (3.1), применим к уравнениям (1.12), (2.8) и к 

зависимостям (1.13), (2.10) операцию MO, получим: 

yk =Ak-1yk-1 + uk-1, y(t0) = y0;                                                   (3.3) 

 zk = cyk,                                                                     (3.4) 

hk = hk-1xk-1 +  uk-1,  x(t0) = y0;                                                  (3.5) 

xk  = hk + pk(zk - c hk).                                                             (3.6) 

Вычитая из уравнений (1.10), (2.8) соответственно уравнения (3.3), (3.5) вычитая  из 

зависимостей (1.13), (2.10) соответственно зависимости  (3.4), (3.6),  запишем полученную 

матричную систему в скалярной форме: 

ΔYk
i = ∑ 𝐴𝑁

𝑗=1
k-1

ijΔYk-1
j + ∑ b𝐿

𝑙=1
k-1

ilFl,                                            (3.7) 

ΔZk
j =∑ 𝑐𝑛

𝑙=1 jl ∑ g𝑀
𝑚=1  klm Фm,                                                        (3.8) 



РАЗДЕЛ: Математические и естественные науки 

Направление: Физико-математические науки 

 

Международный научный журнал "Флагман науки" №1(36) Январь 2026 

www.flagmannauki.ru     |     8 (812) 905 29 09    |     info@flagmannauki.ru 

ΔHk
i = ∑ 𝐴𝑁

𝑗=1
k-1

ij
  ΔHk-1

j,                                                              (3.9) 

ΔXk
i = ΔHk

i + ∑ 𝑝𝑛
𝑗=1

k
ij(ΔZk

j -∑ 𝑐𝑁
𝑙=1 jl  ΔHk

l),                                     (3.10) 

где верхние индексы относятся к массиву дискретизации: k= 1, 𝐷,̅̅ ̅̅ ̅̅  нижние индексы относятся 

к массивам переменных состояния: i =1, N̅̅ ̅̅ ̅, измеряемым 

переменным: j= 1, n̅̅ ̅̅̅  и к компонентам погрешностей априорной и измеряемой информации: 

l=1, L̅̅ ̅̅̅, m=1,M̅̅ ̅̅ ̅. Заметим, что переменные ΔYk
i, ΔZk

j, ΔHk
i , ΔXk

i есть ЦСП из-за того, что в 

содержащихся в правых частях (3.7)-(3.8) зависимостях есть ЦСВ Fl,  l=1, L̅̅ ̅̅̅, Фm, m=1,M̅̅ ̅̅ ̅. 

Проставляя в (3.7)-(3.10) знаки модулей у перечисленных ЦСП и ЦСВ, «делаем» эти 

переменные и величины всегда положительными,  и тем самым увеличиваем абсолютные 

погрешности ΔYk
i, ΔZk

j, ΔHk
i , ΔXk

i . А поэтому эта процедура с модулями приведёт к 

уменьшению эффекта фильтрации. Значит, реализовав эту процедуру, следует иметь в виду, 

что вычисляемый при этом эффект будет меньше реального, то есть в этом случае будет 

получена нижняя граница величины потенциального эффекта. Но зато эта «модульная 

процедура» позволяет упростить математическое описание задачи 3, но, тем не менее, 

получить гарантированную (не завышенную) величину эффекта.  Далее полагаем, что после 

проведения «модульной процедуры» в системе (3.7)-(3.10) получаем соответствующую 

систему  «с модулями», которую не записываем здесь, но мысленно подразумеваем.  Далее 

допускаем, что все ЦСП и СВ, входящие в (3.7)-(3.10), подчиняются нормальному закону 

распределения Лапласа [7], а значит, имеют место зависимости: 

|ΔYk
i|/ηk

i = λY,  |ΔZk
j|/zk

j  = λZ,  |ΔXk
i|/χk

i  =  λX;                             (3.11) 

|ΔHk
i|/ξk

i = λH,  |Fl|/φl = λF, |Фm|/ψm = λФ,                                      (3.12) 

где числители дробей в (3.11), (3.12) - это ЦСП и ЦСВ, знаменатели - это их соответствующие 

СКО, а параметры λ с индексами - это коэффициенты Лапласа (аргументы функции Лапласа), 

характеризующие вероятности попадания ЦСП и ЦСВ в симметричные интервалы 

относительно их нулевых МО. Далее допуская, что указанные «вероятности попадания» для 

всех используемых здесь ЦСП и ЦСВ одинаковы и равны λ, а значит имеют место равенства 

всех коэффициентов Лапласа, то есть:  

λY = λZ = λX = λH = λF = λФ = λ                                                                      (3.13) 

и зависимости (3.11), (3.12) можно представить в виде:  

|ΔYk
i| = ληk

i,  |ΔZk
j| = λzk

j,  |ΔXk
i|  =  λχk

i;                                      (3.14) 

|ΔHk
i| = λξk

i,  |Fl| = λφl, |Фm| = λψm,                                            (3.15) 

Подставив зависимости (3.14), (3.15) в систему, полученную из системы (3.7) - (3.10) путём 

проведения «модульной процедуры» и мысленно подразумеваемую и разделив после 

указанной подстановки  на  λ≠0 каждое уравнение и каждую зависимость в этой системе, 

получим систему относительно СКО ЦСП и ЦСВ, которую представим в матричной форме:  

 ηk = Ak-1ηk-1 + bk-1φ,    η(t0)=η0;                                             (3.16) 

ζk = cgkψ,                                                                  (3.17) 

ξk = Ak-1χk-1,              χ(t0)= χ0=0;                                                                    (3.18) 

 χk  = ξk + pk(ζk - cξk),                                                      (3.19) 

где ηk,   ζk,   ξk,   χk - матрицы соответственно размеров Nx1, nx1, Nx1, Nx1; η0, χ0 - 

матрицы заданных начальных условий, каждая размером Nx1. Решая систему (3.16)-(3.19), 

находим СКО  ηk,   ζk,    χk  соответственно априорных, измеряемых, фильтрованных 

переменных, то есть абсолютные погрешности этих переменных, из которых  χk - полученных 

в результате процедуры фильтрации. Показано, что решения системы (3.7)-(3.10) методом 

корреляционного анализа и решения системы (3.16)-(3.19) совпадают с точностью до 
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указанного ограничения, обусловленного «модульной процедурой», но допустимого для 

рассматриваемой задачи. Подтверждение этого утверждения можно получить и при 

экспериментальной реализации процедуры фильтрации.   

Далее приступаем непосредственно к выполнению математического описания эффекта 

фильтрации. Согласно постановке задачи 3, необходимо ввести количественные критерии 

этого эффекта. Заметим, что все вводимые ниже критерии являются относительными и 

безразмерными. Введём вначале относительные погрешности переменных априорной, 

измеряемой и фильтрованной информации в виде: 

DY,k
i =ηk

i/yB
i,      DZ,k

j =ζk
j/zB

j,     DX,k
i =χk

i/yB
i,  i =1, N̅̅ ̅̅ ̅;  j= 1, n̅̅ ̅̅̅,                 (3.20) 

где  величины yB
i определяются процедурой (1.5), а величины zB

j, согласно (3.4), (1.5), 

определяются формулами: 

zB
j = ∑ cN

i=1 jiyB
i ,    j= 1, n̅̅ ̅̅̅ .                                                    (3.21) 

В дальнейшем продолжим выполнение математического описания при условии: 

n = N,                                                                     (3/22) 

то есть когда количество измеряемых переменных равно количеству априорных переменных 

(переменных состояния). Введём функции сравнения вида: 

fYZ,k
i = DY,k

i/DZ,k
i,   fZX,k

i = DZ,k
i/DX,k

i,   fYX,k
i = DY,k

i/DX,k
i,  i =1, N̅̅ ̅̅ ̅,               (3.23) 

назовём эти функции сравнения локальными критериями и заметим, что эффект в смысле этих 

критериев имеет место, когда каждая из этих функций больше единицы, то есть когда 

соответственно: измеряемая информация точнее априорной, фильтрованная информация 

точнее измеряемой, фильтрованная информация точнее априорной в каждый дискретный 

момент времени. Использовав функции (3.23), введём функции сравнения вида:  

fYZ
i = (1/D)∑ fD

k=1
YZ,k

i,  fZX
i = (1/D)∑ fD

k=1
ZX,k

i,   fYX
i = (1/D)∑ fD

k=1
YX,k

i,         (3.24) 

назовём эти функции сравнения усреднёнными критериями и заметим, что эффект в смысле 

этих критериев имеет место, когда каждая их этих функций больше единицы при усреднении 

локальных критериев на всём интервале времени функционирования системы. Использовав 

величины (3.24), введём величины: 

FYZ  = ∑ kN
i=1

YZ
ifYZ

i,     FZX  = ∑ kN
i=1

ZX
ifZX

i,   FYX  = ∑ kN
i=1

YX
ifYX

i,              (3.25) 

которые назовём средневзвешенными критериями и заметим, что эффект в смысле этих 

критериев имеет место, когда каждая их этих функций больше единицы, где введены 

обозначения для задаваемых в качестве исходной информации весовых коэффициентов, 

удовлетворяющих условиям: 

∑ kN
i=1

YZ
i = 1,       ∑ kN

i=1
ZX

i = 1,     ∑ kN
i=1

YX
i  = 1.                               (2.26) 

Введённые критерии (3.23) - (3.25) характеризуют результаты обработки исходной 

информации о математических описаниях модели системы и модели измерений в виде 

потенциального количественного эффекта процедуры фильтрации. Тем самым решается 

задача анализа эффекта, доставляемого заданной исходной информацией. Целесообразно 

также указать, что на основе выполненного математического описания может быть поставлена 

и решена задача определения таких исходных параметров априорной и измеряемой 

информации, которые обеспечивали бы желаемые величины критериев эффекта фильтрации, 
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то есть задача синтеза эффекта. В символах задачу синтеза эффекта фильтрации можно 

выразить, например, так:  

[η*
i, ζ*

I,  i =1, N̅̅ ̅̅ ̅] = arg{ FYX ≥ F*
YX},                                       (3.27) 

где η*
i, ζ*

I,  i =1, N̅̅ ̅̅ ̅ - найденные процедурой синтеза (синтезированные) СКО относительных 

погрешностей априорной и измеряемой информации, удовлетворяющие условию в  фигурных 

скобках равенства (3.27), в котором F*
YX - желаемая величина средневзвешенного эффекта FYX 

из (3.25), показывающего во сколько раз фильтрованная информация точнее априорной.  

4. Общее математическое описание 

Для использования предыдущих результатов в задаче исследования эффекта 

фильтрации следует, во-первых: а) привести модель заданной непрерывном варианте 

динамической системы к матричному дифференциальному уравнению (1.1); б) привести 

модель измеряемой информации для заданной динамической системы к виду матричной 

зависимости (1.2); в) определить допустимый в смысле точности решений уравнения (1.1) шаг 

по времени и соответствующую характеристику дискретности (1,3).  Во-вторых, 

целесообразно пользоваться приведённой ниже последовательностью действий, необходимых 

для составления вычислительного алгоритма, в форме скалярных эквивалентов 

использованных ранее матричных уравнений и зависимостей из предыдущих математических 

описаний. Вот эта последовательность действий: 

0. Исходная информация: 

0.1. Характеристика дискретности: 

D – количество моментов времени наблюдения за функционированием динамической 

системы на всём заданном интервале времени её функционирования; 

0.2. Характеристики априорной информации: 

N – количество переменных состояния системы (априорных переменных); 

t0, tE – начальный и конечный моменты времени функционирования системы; 

y0
i – МО начального условия Y0

i переменной состояния системы, i =1, N̅̅ ̅̅ ̅; 
ui=ui(t) – непрерывные детерминированные функции времени, моделирующие 

воздействия на систему, i =1, N̅̅ ̅̅ ̅;  tϵ[t0;tE]; 

aij=aij(t) – непрерывные детерминированные функции времени, моделирующие 

собственные свойства системы i,j =1, N̅̅ ̅̅ ̅;  tϵ[t0;tE]; 

bil=bil(t) – непрерывные детерминированные функции времени - коэффициенты при 

ЦСВ Wl, характеризующих погрешности априорной информации модели системы, i =1, N̅̅ ̅̅ ̅;  l 
=1, L̅̅ ̅̅̅, где L – количество ЦСВ Wl, tϵ[t0;tE]; 

η0
i – СКО Y0

i, i =1, N̅̅ ̅̅ ̅; 
 φl – СКО ЦСВ Wl; l =1, L̅̅ ̅̅̅; 
0,3. Характеристики измеряемой информации: 

n – количество измеряемых переменных, n = N; 

cij – постоянные детерминированные величины - коэффициенты в зависимостях (1.2); 

gim=gim(t) – непрерывные детерминированные функции времени – коэффициенты при 

ЦСВ Vm, характеризующих погрешности измеряемой информации, i =1, n̅̅ ̅̅̅; m =1,M̅̅ ̅̅ ̅, где M – 

количество погрешностей  Vm,  tϵ[t0;tE]; 

ψm  – СКО ЦСВ Vm,  l =1,̅M ;  

0.4. Параметры средневзвешенных критериев эффекта фильтрации, удовлетворяющих 

условиям (3.26) при n = N: 

kYZ
i, kZX

i,  kYX
i,  i =1, N̅̅ ̅̅ ̅  - весовые коэффициенты соответственно для критериев FYZ ,  

FZX , FYX ; 

0.5. Символ Кронеккера: 
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Eij =0 при i≠j,  Eij =1 при i=j;  i,j =1, N̅̅ ̅̅ ̅;     
0.6. Характеристика вероятностных свойств СП и СВ: 

λ – коэффициент Лапласа (аргумент функции Лапласа), соответствующий вероятности 

попадания ЦСП и ЦСВ в симметричный относительно нуля интервал изменения этих ЦСП и 

ЦСВ,  λϵ[0,9; 0,999], c помощью которого при необходимости можно определить значения 

абсолютных погрешностей ΔYk
i, ΔZk

j, ΔXk
i на основе формул (3.14), включив их в состав 

вычислительного алгоритма исследования эффекта после получения решений системы (3.16) 

- (3.19). 

Далее перечислены иерархически последовательные вычислительные операции с 

использованием скалярных переменных и величин из предыдущих математических описаний: 

1: Δt = (tE -t0)/D;   

2:  tk = tk-1+Δt,   где здесь и далее k= 1,D̅̅ ̅̅̅; 
3: ak-1

ij
 =aij(tk-1)Δt,   uk-1

i =ui(tk-1)Δt,   bk-1
il =bil(tk-1)Δt,  i,j =1, N̅̅ ̅̅ ̅;  l =1, L̅̅ ̅̅̅; 

gk
im =gim(tk), i =1, n̅̅ ̅̅̅;  m =1,M̅̅ ̅̅ ̅; 

4: Ak-1
ij =Eij + ak-1

ij,    i,j =1, N̅̅ ̅̅ ̅; 
5: Wlm = 0 при l≠m, Wlm = (φl)2 при l=m=1, L̅̅ ̅̅̅; 
Vlm = 0 при l≠m, Vlm = (ψm)2 при l=m=1,̅M ; 

6: Bk-1
ij = ∑ bL

l=1
k-1

il∑ WL
m=1 lm bk-1

jm,   i,j =1, N̅̅ ̅̅ ̅;   

Gk
ij =∑ gM

l=1
k

il∑ VM
m=1 im gk

jm, i,j =1,n̅̅ ̅̅ ; 

7: rk
ij = ∑ AN

l=1
k- il∑ RN

m=1
k-1

lmAk-1
jm + Bk-1

ij,  R0
lm = 0 при l≠m,; R0

lm = (η0
l)2  при l=m; 

8: qk
ij = ∑ cN

l=1 il∑ rN
m=1

k
lmcjm + Gk

ij, i,j =1,n̅̅ ̅̅ ; 

9: использовать процедуру обращения матрицы [8]: Qk
ij

 =(qk
ij)-1, i,j =1,n̅̅ ̅̅ ; 

10: pk
ij =∑ rN

l=1
k

il∑ cn
m=1 mlQk

mj, i =1, N̅̅ ̅̅ ̅; j =1,n̅̅ ̅̅ ; 

11: sk
ij = Eij - ∑ pn

m=1
k

imcmj, i,j =1, N̅̅ ̅̅ ̅;  

12: Rk
ij = ∑ sN

l=1
k

il∑ rN
m=1

k
lmsk

jm + ∑ pn
a=1

k
ia∑ cn

b=1 abpk
bj ,  i,j =1, N̅̅ ̅̅ ̅;   

13: ηk
i =∑ AN

j=1
k

ijηk-1
j + ∑ bL

l=1
k-1

ilφl,  i =1,N̅̅ ̅̅̅; 

14: ζk
j = ∑ cN

l=1 jl∑ gM
m=1

k
lmψm,  j =1,n̅̅ ̅̅ ; 

15: ξk
i = ∑ AN

j=1
k-1

ijχk-1
j,   χ0

i =0,   i =1,N̅̅ ̅̅̅; 

16: χk
i = ξk

i + ∑ pn
j=1

k
ij(ξk

j - ∑ cN
l=1 jl ξk

l), i =1,N̅̅ ̅̅̅; 

17: yk
i =∑ AN

j=1
k-1

ijyk-1
j + uk-1

i, yi(t0) =y0
i,  i =1,N̅̅ ̅̅̅; 

18:zk
j = ∑ cN

l=1 jl∑ 𝑦n
m=1

k
m,  j =1,n̅̅ ̅̅ ; 

19: hk
i = ∑ AN

j=1
k-1

ijxk-1
j + uk-1

i,  xi(t0) =y0
i,  i =1,N̅̅ ̅̅̅; 

20: xk
i = hk

i + ∑ pn
j=1

k
ij(zk

j - ∑ cN
l=1 jl hk

l),  i =1,N̅̅ ̅̅̅; 

21:Yk
i =∑ AN

j=1
k-1

ijYk-1
j + uk-1

i  + ∑ bL
l=1

k-1
ilFl,   Yi(t0) =Y0

i,  i =1,N̅̅ ̅̅̅; 

22: Zk
j = ∑ cN

l=1 jl(yl  + ∑ gn
m=1

k
lmФm),  j =1,n̅̅ ̅̅ ; 

23: Hk
i = ∑ AN

j=1
k-1

ijXk-1
j + uk-1

i,   Xi(t0) =y0
i,  i =1,N̅̅ ̅̅̅; 

24: Xk
i = Hk

i + ∑ pn
j=1

k
ij(Zk

j - ∑ cN
l=1 jl Hk

l),  i =1,N̅̅ ̅̅̅; 

25: определить наибольшие значения |ẏB
i = sup{|ẏi (t)|i =1,N̅̅ ̅̅̅};  

yB
i =sup{|yi(t)|,i =1,N̅̅ ̅̅̅};   zB

j =∑ cN
l=1 jlyB

l,   j= 1, 𝑛̅̅ ̅̅̅; 
26: определить относительные погрешности DY,k

i, DZ,k
i, DX,k

i, i =1,N̅̅ ̅̅̅ по формулам (3,20); 

27: определить локальные критерии fYZ,k
i, fZX,k

i, fXY,k
i, i =1,N̅̅ ̅̅̅  по формулам (3.23); 

28: определить усреднённые критерии fYZ
i, fZX

i, fYX
i,  i =1,N̅̅ ̅̅̅  по  формулам (3.24); 

29: определить средневзвешенные критерии FYZ, FZX, FYX по формулам (3,25). Следует 

отметить, что пункты 2 – 28 этой последовательности действий находятся внутри 
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итерационного цикла по номеру k дискретности, при этом  до пункта 2 необходимо задать 

начало циклов, то есть присвоить k=1, а после пункта 28 ввести счётчик циклов в виде: 

«k=k+1», после которого назначить окончание  итерационных вычислений в виде: «если к≤D, 

то перейти к пункту 2». Кроме этого, следует организовать вывод результатов вычислений: а) 

после пунктов 27, 28 внутри итерационных вычислений с удобным шагом, б) после пункта 29, 

то есть после окончания вычислений. 

Далее при необходимости можно решить задачу синтеза эффекта фильтрации, для чего 

следует задать желаемую величину, например, средневзвешенного критерия эффекта F*
YX, 

задать реальные интервалы изменения СКО погрешностей априорной информации [ηL
i;  ηB

i] и 

для СКО измеряемой информации [ζL
j; ζB

j] и коэффициентами kY
i, kZ

j изменения 

соответственно величин ηi,  ζj, задать начала циклов изменения этих переменных от верхних 

границ к нижним при условии, что коэффициенты kY
i, kZ

j меньше  единицы, а внутри каждого 

цикла реализовать проверку условия (3.27) и организовать выход из циклов при 

удовлетворении этого условия, зафиксировав найденные величины   η*
i,  ζ*

j, обеспечивающие 

желаемый эффект фильтрации. При этом, очевидно, что эти циклы должны охватывать 

указанные выше циклы итерационных вычислений, то есть итерационные вычисления 

должны находиться внутри циклов по параметрам ηi, ζ . Если описанный процесс поиска 

параметров не дал желаемого результата, то следует либо расширить интервалы изменения 

СКО погрешностей, либо уменьшить величину желаемого эффекта. Как правило, параметры 

системы изменять не представляется возможным, а значит, остаётся предъявить требования к 

погрешностям устройств измерений при заданной величине желаемого эффекта фильтрации. 

Если удалось решить задачу синтеза эффекта с положительным результатом, то следует 

составить имитационный алгоритм процедуры фильтрации, заключающийся после 

дискретизации модели системы в выполнении пунктов 4,...,12 и 22,...27 при подключении 

имитатора измерений в пункте 22.  

5. Об алгоритме и программе исследования эффекта фильтрации 

С использованием предыдущих результатов составлен развёрнутый алгоритм анализа 

и синтеза эффекта фильтрации, на основе которого разработана программа. 

Исходная информация для алгоритма и программы: 1) количество N переменных 

состояния системы и количество n измеряемых переменных, в общем случае n ≤ N, в данной 

работе принято n=N; 2) непрерывные линейные обыкновенные дифференциальные уравнения 

относительно переменных состояния с аддитивными погрешностями, названными 

погрешностями априорной информации; 3) линейные зависимости измеряемых переменных 

от переменных состояния системы с аддитивными погрешностями, названными 

погрешностями измеряемой информации; 4) параметры априорной и измеряемой 

информации; 5) весовые коэффициенты критериев эффекта фильтрации.  

На основе исходной информации реализуется процедура дискретизации непрерывных 

дифференциальных уравнений системы и зависимостей для измеряемых переменных. Далее 

осуществляются математические действия согласно процедуре дискретной линейной 

оптимальной фильтрации (с использованием процедуры обращения матрицы [8]), которая 

завершается составлением системы разностных уравнений и алгебраических зависимостей 

относительно фильтрованных переменных - оценок переменных состояния системы. Кроме 

этого, составлены разностные уравнения и зависимости относительно абсолютных 

погрешностей переменных априорной и измеряемой информации. 

Далее, согласно процедуре исследования эффекта фильтрации определяются: 1) 

относительные погрешности априорных, измеряемых и фильтрованных переменных, как 

отношения соответствующих абсолютных погрешностей к наибольшим значениям их 

математических ожиданий; 2) локальные критерии эффекта фильтрации, как отношения 
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относительных погрешностей указанных переменных друг к другу; 3) усреднённые критерии 

эффекта фильтрации, как усреднения локальных критериев по всем дискретным значениям 

времени на интервале дискретизации; 4) средневзвешенные критерии эффекта фильтрации, 

как усреднения критериев предыдущей процедуры по количеству переменных с 

использованием заданных весовых коэффициентов. В качестве итогового критерия эффекта 

фильтрации может быть принята величина FYX, которая показывает, во сколько раз 

погрешности априорной информации больше погрешностей фильтрованной информации в 

смысле средневзвешенного критерия или другими словами с тем же смыслом: во сколько раз 

фильтрованная информация точнее априорной. Это описана процедура анализа эффекта 

фильтрации, реализованная в алгоритме и программе. В алгоритме и программе реализовано 

решение задачи синтеза эффекта фильтрации, заключающейся в определении таких 

погрешностей априорной и измеряемой информации, при которых достигается желаемый 

эффект фильтрации. 

Программа разработана в среде Pascal ABCNET3.8 [9] для N=n=30, исходный модуль 

которой занимает 36 Кб и на стационарном компьютере с частотой 2,9 ГГц с 64-х разрядной 

сеткой время  выполнения этой программы с количеством дискрет D=106 для интервала 

времени функционирования системы tE-t0=10c составляет приблизительно T=0,001166P6 

секунд с относительной погрешностью 4%, где P - порядок исходной системы 

дифференциальных правлений. В табл.1 приведены примеры результатов вычисления 

времени T в зависимости от порядка P.      

Таблица1 

P 4 6 8 9 10 

T, секунды 8 60 306 919 1166 

 

Эта информация может служить исходной для предъявления требований к 

характеристикам компьютера, реализующего процедуру анализа эффекта фильтрации.  

Например, очевидно, что при P=4 реальный компьютер может иметь частоту 2,9 ГГц , а для 

P>4 необходим реальный компьютер с частотой намного больше указанной.  В качестве 

простейшего примера использования программы для исследования эффекта фильтрации  

рассмотрим систему, описываемую непрерывным дифференциальным уравнением: 

m 
dY

dt
 = sY - mw + vF, Y(t0)=Y0 , tϵ[t0; tE],                                        (5.1)  

c измерителем, описываемым зависимостью: 

Z = c(y + gФ),                                                             (5.2) 

где Y - переменная состояния (априорная переменная), Z - измеряемая переменная, m, k, w, - 

детерминированные величины, F, Ф - ЦСВ, характеризующие соответственно относительные 

погрешности априорной и измеряемой информации и заданные своими СКО φ, ψ;  v - 

величина, определяемая формулой: 

v  = ẏB,                                                                   (5.3) 

g - линейная функция времени, определяемая формулой: 

g  = vt,                                                                    (5.4) 

где v - наибольшее на интервале времени tϵ[t0; tE] значение первой производной от МО 

переменой состояния Y,  c - постоянный во времени масштабный коэффициент. После 

дискретизации уравнения (5.1) и зависимости (5.2) с учётом (5.3), (5.4), имеем:  

Yk = (1 + аk-1)Yk-1    + uk-1 + bF,    Y0=Y0 ,  tϵ[t0; tE],                           (5.5) 

    Zk = c(yk + gkФ),                                                              (5.6) 

tk = tk-1 + Δt,  k= 1,D.̅̅ ̅̅ ̅                                                         (5.7) 
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В разностном уравнении (5.5) и в зависимости (5.6) введены обозначения: 

аk-1 = sΔt/m,    uk-1 = -wΔt/m,  b = vΔt/m,  gk = vtk .                          (5.8) 

Численное моделирование по разработанной программе выполнено для следующих 

неварьируемых исходных параметров: 

t0=0с, tE =10с, m=100кг, s=37,17кг/c, w=9,81м/с2, v=215м/с2, D=106, ψ=10-5,     (5.9) 

и для двух варьируемых исходных параметров: 

cϵ[0,125; 0,5],  f = φ/ψ,   fϵ[2; 8],                                               (5.10) 

где с - масштабный коэффициент в модели измеряемой информации и введён параметр f, 

равный отношению относительной погрешности априорной информации к относительной 

погрешности измеряемой информации, то есть показывающий, во сколько раз измеряемая 

информация точнее априорной. Результаты вычислений по программе представлены в табл.2.  

Таблица 2 

с→ 

f  ↓ 

 

0,5 

 

0,25 

 

0,125 

 

2 

8,47 

1,10 

7,32 

8,47 

1,18 

9,27 

8,47 

2,33 

4,15 

 

4 

12,67 

1,12 

11,66 

16,93 

1,06 

14,32 

16,93 

1,44 

18,52 

 

8 

25,35 

1,08 

23,16 

25,34 

1,58 

29.50 

33,86 

1,05 

28,99 

 

В левом столбце табл.2 записаны значения параметра f, в верхней строке записаны 

значения параметра c, во внутренних клетках сверху вниз записаны значения 

средневзвешенных критериев FYZ, FZX, FYX, основным из которых, например, назначен FYX. На 

результатах, приведённых в табл.2, можно показать решение задачи синтеза эффекта: если 

допустим, что желаемая величина эффекта FYX ≥F*
YX =14, то выбираем из табл.2 величину 

FYX=14,32, при которой из левого столбца находим f =f* = 4, а из верхней строки находим c 

=c* = 0,25.  

Заключение 

1. Выполнено математическое описание для исследования эффекта линейной 

оптимальной фильтрации в дискретном варианте: преобразованы непрерывные 

дифференциальные уравнения к дискретной форме; описана процедура определения  

фильтрованной информации (оценок переменных состояния системы) с использованием 

априорной информации о динамической системе и измеряемой информации для этой системы 

согласно методу линейной дискретной оптимальной фильтрации; описан подход к решению 

задач анализа эффекта фильтрации с введением критериев этого эффекта, заключающегося в 

повышении точности априорной информации о динамической системе. Этот подход может 

быть применён для анализа эффекта фильтрации нелинейной динамической системы. 

2. Составлен алгоритм определения количественного эффекта линейной оптимальной 

фильтрации в дискретном варианте при условии равенства количеств измеряемых 

переменных количеству переменных состояния системы, а также при условии 

некоррелированности случайных величин, которыми характеризуются погрешности 

априорной и измеряемой информации. В этом алгоритме указан фрагмент имитационной 

процедуры фильтрации, который может быть превращён в реальный при замене модели 
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имитаций измерений реальными измерениями. Этот алгоритм может быть обобщён на случаи 

снятия указанных выше ограничивающих условий.  

3. Разработана программа анализа эффекта линейной оптимальной фильтрации в 

дискретном варианте на основе составленного алгоритма: указан её объём и время 

выполнения при заданном количестве дискрет по времени и в зависимости от количества 

переменных состояния системы (порядка системы дифференциальных уравнений) на 

компьютере с указанными характеристиками в указанной среде программирования. В этой 

программе указан фрагмент имитационной процедуры фильтрации, который может быть 

превращён в реальный при замене модели имитаций измерений реальными измерениями. 

Приведён пример использования программы с результатами численного моделирования в 

виде таблицы, в которой приведены величины критериев эффекта фильтрации в зависимости 

от характеристик исходных погрешностей априорной и измеряемой информации, а также 

указан метод синтеза эффекта, то есть определения величин исходных погрешностей, при 

которых достигается желаемый эффект. 

4. Предложенный подход к исследованию эффекта линейной оптимальной фильтрации в 

дискретном варианте может найти практическое применение для поддержки принятия решения о 

целесообразности дополнительной загрузки компьютера, обрабатывающего информацию в 

системе, программой процедуры фильтрации при известных характеристиках погрешностей 

модели системы и модели измерений. Если численное моделирование по этой программе даст 

положительные результаты о желаемом количественном эффекте, то после получения таких 

результатов можно на основе разработанной программы осуществить численное моделирование 

имитационной процедуры фильтрации, а при наличии экспериментальных ресурсов - реальную 

процедуру фильтрации при подключении устройства измерения. В частности, описанный подход 

может быть использован при создании автономных бесплатформенных инерциальных 

навигационных систем [10] c коррекцией от внешних источников информации, в том числе и в 

режиме расширенного функционирования [11].  
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