Зикий Анатолий Николаевич, К.т.н., старший научный сотрудник, АО ТНИИС, г. Таганрог

Дёмочкин Денис Игоревич, Инженер, АО ТНИИС, г. Таганрог

> Сташок Павел Александрович, Инженер 1-й категории, АО ТНИИС, г. Таганрог

КОЛЬЦЕВОЙ ДЕЛИТЕЛЬ МОЩНОСТИ САНТИМЕТРОВОГО ДИАПАЗОНА ВОЛН

Аннотация: в статье проведено исследование двухканального делителя мощности, работающего в широком диапазоне частот. Даны описания схемы и конструкции делителя мощности на микрополосковых линиях передачи. Проведен анализ амплитудно-частотных характеристик разных каналов с помощью пакета Microwave Office. Экспериментально исследован макет делителя мощности, получены следующие результаты: в полосе от 4 до 8 ГГц потери не превышают 8 дБ, неравномерность не превышает 3,35 дБ, а неидентичность каналов не превышает 1 дБ.

Ключевые слова: делитель мощности; микрополосковые линии; амплитудночастотные характеристики; потери; неравномерность; неидентичность; моделирование; эксперимент.

Введение

Делители мощности нашли широкое применение в приемно-передающей аппаратуре связи, навигации и радиолокации Их разработке, исследованию и применению уделяется постоянное внимание. В связи с широким использованием антенных решеток важное значение имеет миниатюризация делителей мощности, поэтому целью настоящей работы является экспериментальное исследование малогабаритного делителя мощности.

По делителям мощности имеется обширная литература, в том числе монографии [1-3], учебные пособия [4], статьи [5-7], реклама [8-10], патенты [11].

Объектом исследования в данной работе является корпусированный модуль СВЧ производства фирмы «Тесла».

К модулю предъявляются следующие требования:

- диапазон рабочих частот от 4 до 8 ГГц;
- потери не более 8 дБ;
- развязка между выходными плечами не менее 12,5 дБ;
- волновое сопротивление входа и выхода 50 Ом.

Схема и конструкция

Принципиальная схема делителя мощности приведена на рисунке 1. Делитель мощности построен на однокольцевой схеме Вилкоксона, на несимметричной микрополосковой линии передачи. Линии передачи напылены на одной стороне поликоровой подложки, а другая сторона подложки имеет сплошную металлизацию. Плата закреплена в корпусе чашечного типа из алюминиевого сплава. В качестве соединителей используются коаксиально-микрополосковые переходы типа SMA. Для защиты от внешних воздействий корпус закрывается крышкой. Фото делителя мощности со снятой крышкой можно видеть на рисунке 2. В таблице 1 приведены основные геометрические размеры делителя мощности.

Рисунок 1 – Принципиальная схема кольцевого делителя мощности

Рисунок 2 – Фото кольцевого делителя мощности со снятой крышкой

Таблица 1

Геометрические размеры делителя мощности							
	Длина,	Ширина,	Наименование				
	MM	MM					
W1	12	0,98	Регулярная микрополосковая линия				
W2, W3	4,7	0,98	Микрополосковая линия				
W4, W5	13	0,98	Регулярная микрополосковая линия				
	25×25×1		Подложка поликор, мм				
X1-X3	Гнездо SMA		Соединитель				
Er	9,8		Относительная диэлектрическая проницаемость подложки				
tg δ	10-4		Тангенс угла диэлектрических потерь				
_	22×22×3		Поглотитель на крышке, мм				
_	39×39×13,5		Наружный размер корпуса, мм				

Моделирование

Моделирование ДМ проводилось в среде Microwave Office (MWO). Модель ДМ в МWO приведена на рисунке 3. В ней использованы геометрические и электрические параметры, приведённые в таблице 1. На рисунке 4 можно видеть амплитудно-частотную характеристику S21 в полосе от 4 до 8 ГГц. На рисунке 5 показана частотная характеристика S31 в той же полосе. На рисунке 6 изображена частотная зависимость развязки между вторым и третьим портами S32.

Рисунок 3 – Модель ДМ48 в МWO

РАЗДЕЛ: Инженерное дело, технологии и технические науки Направление: Технические науки

Рисунок 5 – АЧХ ДМ48 S31 в полосе от 4 до 8 ГГц

Рисунок 6 – Развязка ДМ48 S32 между двумя выходами

Эксперимент

Эксперименты проводились на установке, содержащей векторный анализатор цепей типа PNA-L, набор кабелей и переходов, согласованную нагрузку 50 Ом.

В первом эксперименте исследован коэффициент передачи s21 (рисунок 7). Незадействованный выход соединен с согласованной нагрузкой.

РАЗДЕЛ: Инженерное дело, технологии и технические науки Направление: Технические науки

Рисунок 7 – АЧХ делителя мощности s21 в диапазоне 4-8 ГГц

Во втором эксперименте снята кривая коэффициента передачи s31 (рисунок 8). Незадействованный выход соединен с согласованной нагрузкой.

Рисунок 8 – АЧХ делителя мощности s31 в диапазоне 4-8 ГГц

В третьем эксперименте получена развязка между двумя выходами s32 (рисунок 9). При этом вход делителя мощности соединяется с согласованной нагрузкой.

РАЗДЕЛ: Инженерное дело, технологии и технические науки Направление: Технические науки

Рисунок 9 – АЧХ делителя мощности s32 в диапазоне 4-8 ГГц

Полученные результаты соответствуют заданным требованиям и позволяют сформулировать количественные выводы.

Выводы

Ниже в таблице 2 приведены основные параметры делителя мощности. Из этой таблицы видно, что все измеренные параметры делителя мощности соответствуют требованиям, с учетом того, что два кабеля дают потери 3 дБ на частоте 8 ГГц и 1 дБ на частоте 4 ГГц.

Таблица 2

Наименование параметра, размерность	Задано	Модель	Измерено			
Диапазон рабочих частот, ГГц	4 - 8	4 - 8	4 - 8			
Количество каналов	2	2	2			
Потери, дБ	4 - 6	3,33	4,5 – 7,85			
Развязка между выходными плечами, дБ	12 – 30	12	13 – 31			
Волновое сопротивление входов и выходов, Ом	50	50	50			

Основные параметры делителя мощности

Список литературы:

1. Печурин В.А., Петров А.С. Широкополосные кольцевые делители-сумматоры мощности СВЧ-диапазона. LAP LAMBERT Academic Publishing, 2011. – 144 с.

2. Справочник по элементам полосковой техники. Под ред. А.Л. Фельдштейна. – М.: Связь, 1979. – 336 с.

3. Микроэлектронные устройства СВЧ / Бова Н.Т., Ефремов Ю.Г., Конин.В.В. и др. – Киев, Техника, 1984. – 183 с.

4. Проектирование фазированных антенных решёток. Учебное пособие. Под ред. Д.И. Воскресенского. 3-е издание. -М.: Радиотехника, 2003. – 632 с.

5. Губарев Д.Е., Зикий А.Н., Сперанская Г.В., Сташок П.А. Моделирование и экспериментальное исследование синфазного кольцевого делителя мощности. Инженерный вестник Дона, 2019 №4. URL: ivdon.ru/ru/magazine/ archive/n4y2019/5865.

6. Андрианов А.В., Губарев Д.Е., Зикий А.Н., Сленчковский В.Г. Делитель мощности на основе 4-х шлейфного квадратурного моста. Инженерный вестник Дона, 2018 №3. URL: ivdon.ru/ru/magazine /archive/n3y2018/5105.

7. Кисиленко К.И., Мякишева М.С., Тимофеев Е.П. Разработка трёхканального делителя мощности СВЧ диапазона. Труды НГТУ им. Р.Е. Алексеева, 2016, №3 (114), с. 64.

8. Модуль СВЧ М44454, АПНТ.434820.060ТУ. Информационный лист. Ростов-на-Дону, ФГУП «РНИИРС», 2021 г. 1 стр.

9. Электронные компоненты ЭЛКОТЕХ. Пассивные СВЧ компоненты. http://www.semiconductors.ru/

10. ВЧ и СВЧ радиокомпоненты Ведущих мировых производителей. Прайс-лист, выпуск 11. Москва, РАДИОКОМП, 2010. – 88 с.

11. Алыбин В.Г., Зарапин С.А., Яхутин С.А., Авраменко С.В. Делитель мощности для бортовой аппаратуры космического аппарата. Патент РФ №2.608978, гос. рег. 2017 г.