УДК 581.524.2

Попов Евгений Германович,

кандидат биологических наук, ведущий научный сотрудник, Центральный ботанический сад НАНБ, г. Минск Popoff Eugene Herman, PhD, Central Botanical Garden of NASB, Minsk

ПРОБЛЕМА ИНВАЗИИ ЗОЛОТАРНИКА КАНАДСКОГО PEШAEMA EASY TO DEFEAT CANADIAN GOLDENROD INVASION

Аннотация: Работа акцентируют внимание на методах решения проблемы инвазии золотарника канадского; рассматриваются системные подходы к искоренению вреда от данного чужеродного вида растений.

Abstract: The paper suggests how to prevent Canadian goldenrod invasion. **Ключевые слова:** золотарник канадский, методы контроля фитоинвазии **Keywords:** Canadian goldenrod, control methods for invasive species

Проводимый мониторинг показывает, что в Союзном государстве России и Беларуси (СГРБ) с потеплением климата увеличиваются количество популяции чужеродных видов растений, называемых инвазионными или инвазивными (лат. *invasio* – нашествие, нападение, набег, насилие, захват). Стало заметно негативное воздействие таких пришельцев на местные, т. е. автохтонные виды наших флоры и фауны – они образуют монодоминантные популяции, изменяют структуру растительных сообществ, поэтому их классифицируют как "видытрансформеры". Наряду с известными инвазионными видами (борщевик, череда олиствлённая, эхиноцистие лопастной и др.) опасным трансформером явился золотарник канадский *Solidago canadensis* L. родом из Северной Америки. В фитоценозах, где он поселяется (лесные опушки, парки, луга [сенокосы], побережья рек и озёр), ухудшаются условия обитания, что вредит популяциям не только видов редких и исчезающих, но и обычных растений и животных; *S. canadensis* как аллергенное растение несёт угрозу и здоровью людей [1, 2].

Распространение золотарника канадского показательно в Республике Беларусь (РБ), где Кадастровый отчёт [www.plantcadastre.by] отмечает, что уже в 2023 г. число зарегистрированных популяций этого трансформера достигло 2864, охватывая территорию в 692,6 га (Рис. 1), причём наибольшая площадь его инвазий характерна для центральной части Беларуси – Минской области (497,8 га), в т. ч. для Минского района (222,4 га).

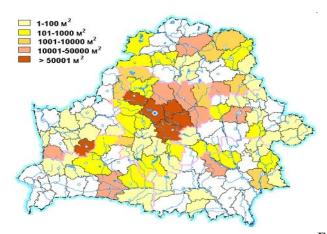


Рисунок 1 – Карта распространения золотарника канадского в Беларуси (2023 г.)

Исходные рассадники *S. canadensis* – дачные участки, места под линиями электропередач (ЛЭП) и "бесхозные" территории, в т. ч. пустыри, кладбища, свалки, полосы земли вдоль автои железнодорожных магистралей (Рис. 2).

Рисунок 2 – Инвазии золотарника канадского на "бесхозные" территории

Механические методы борьбы с золотарником канадским [1, 2].

Наиболее простой и экологически безопасный способ уничтожения золотарника *S. canadensis* — скашивание в фазе "бутонизация"→"начало цветения" (июль-август), причём операция проводится системно (2-3 раза в сезон, по достижению высоты возобновляемых побегов ≤20 см). Скошенные растения обязательно утилизируются (компостируются или сжигаются). В качестве щадящего, оказывающего меньшее влияние на виды местной флоры в речных долинах предложены: а) метод затопления участков с золотарником канадским на ≥10 дней; б) метод накрывания участков с золотарником канадским непрозрачной плёнкой на три месяца; однако, поскольку такие меры открывают участок для проникновения других инвазивных видов, они допускаются лишь в сочетании с последующим незамедлительным высевом бобовых или видов местной флоры. Кроме регулярного подкашивания побегов для уничтожения данного инвазивного вида применяются и другие способы механического воздействия, в частности, вспашка и дискование. К сожалению, кошением и дискованием оккупированной золотарником канадским территории достигается лишь краткосрочный эффект, т. е. эффективность, как правило, невысока, ведь *S. canadensis* быстро возобновляется, давая новые побеги даже из фрагментов стебля и корневищ (Рис. 3).

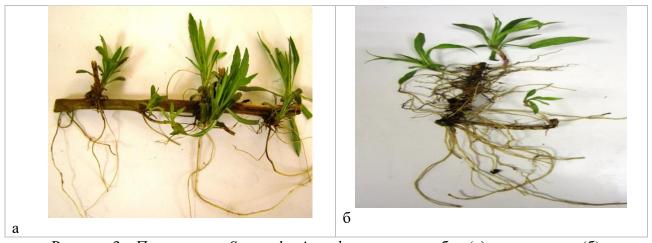


Рисунок 3 – Прорастание S. canadensis из фрагментов стебля (a) и корневища (б)

Химические методы борьбы с золотарником канадским [1, 2]

Рассмотрим кратко, как модельные, применения химических методов борьбы с инвазиями S. canadensis в Республике Беларусь (РБ). Согласно Техническому кодексу установившейся практики (ТКП) эти методы основаны на использовании гербицидов, из перечня которых в Госреестр средств защиты растений и удобрений, разрешенных к применению, для уничтожения золотарника канадского в РБ внесены системные препараты Торнадо, Балерина и Магнум. Так, Магнум (см. Госреестр РБ, стр. 103, и п. 6.9.16 ТКП 17.05-03-2020; д. в.: метсульфурон-метил) – экономичный гербицид, один из немногих, для борьбы с сорняками на землях несельскохозяйственного пользования с разрешением применения в населенных пунктах. Гербицидную обработку опрыскиванием инвазивных видов проводят локально в утренние безветренные часы по отдельным кустам, что позволяет сохранять другие растения. Расход рабочей жидкости -4...5 л на 100 кв.м. (из расчёта 20 г/га или 0,2 г на 1сотку); для достижения эффекта полного искоренения инвазивного вида обработку гербицидом отдельных кустов необходимо продублировать через 10...15 суток. Для борьбы с S. canadensis в период его роста применяют сплошного действия гербициды (Торнадо, Ураган; д. в.: глифосат) и их комбинации с другими гербицидами (недостатком метода является гибель всех растений, в т. ч. древесных и сохранение "выжженного" покрова в течение двух сезонов).

Биологические методы борьбы с золотарником канадским

Ввиду больших материально-трудовых затрат, вредных побочных эффектов, недостаточной эффективности механических и химических способов борьбы с инвазиями чужеродных видов актуально разрабатывать и внедрять альтернативные подходы, в т. ч. экологичные биологические методы.

Например, для создания биопрепаратов, способных остановить агрессию *S. canadensis* обратим внимание на выделение специфичных к этому трудноискоренимому виду фитопатогенных грибов [3].

Также, представляет интерес возможность использования растений-конкурентов (кострец безостый, лисохвост луговой и др.), которые в силу своего характера (раннее пробуждение весной, бурный рост) препятствуют развитию *S. canadensis* и, вытесняя его, способствуют ремедиации биоценозов.

Следующий метод биоконтроля инвазивного золотарника канадского имеет в основе использование таких его естественных врагов, как насекомые – мушки, моли, листовёртки (Рис. 4 а-г), личинки которых поедают американский золотарник (только), но не *S. virgaurea* L. (золотарник обыкновенный) [3-9].

РАЗДЕЛ: Сельскохозяйственные науки Направление: Сельскохозяйственные науки

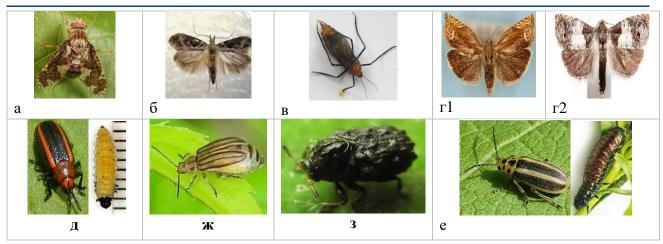


Рисунок 4 — Природные враги золотарника канадского [3-9]:

а – мушка (Eurosta solidaginis, Fitch);

б – выемчатокрылая моль (Gnorimoschema gallaesolidaginis, Riley);

в – мошка ропаломия (Rhopalomyia solidaginis Loew);

г1 – листовёртка (Phaneta formosana, Clemens);

г2 – листовёртка (Epiblema scudderiana, Clemens);

д – жук и его личинка-"минёр" (Microrhopala vittata Fabr.);

ж – жук орфаэлла (Ophraella conferta LeConte); з – жук эксма (Exema canadensis, Pierce); е – жук трирабда северная и его личинка-"минёр" (Trirhabda borealis virgata, Blake)

Отметим, что *S. canadensis* может служить кормом некоторым нашим аборигенным видам (улитки, слизни, тли, мелкие грызуны, олени), однако, как видим, все они в условиях СГРБ не сдержали нашествие "героя"-американца.

В сдерживании агрессивных инвазий золотарника канадского перспективна, видимо, разработка актуальной экологически чистой технологии с привлечением отдельных видов жуков (Рис. 8 д-е), личинки-минёры которых паразитируют исключительно на этом растении и, питаясь его биомассой, успешно расправляются с данным трансформером в Северной Америке (там, поэтому, *S. canadensis* не считается инвазивным) [3-9].

Заключение. Из-за отсутствия универсальных экологичных подходов к предотвращению ущерба от золотарника канадского, приоритет в борьбе с ним имеют химические (гербицидные) методы; однако назрела необходимость в разработке альтернативных дружественных природе биотехнологий борьбы с инвазиями данного вида, основанных на использовании селективных патогенных грибов, растений-конкурентов и полезных насекомых-фитофагов.

Список литературы:

- 1. Олешук, Е.Н. Отчуждённые территории как фактор сохранения и причина экспансии инвазивных видов растений / Е.Н. Олешук, А.В. Усик М.М. Сак, Е.Г. Попов // Флагман науки. -2023. № 9. C. 33-36.
- 2. Ламан, Н.А. Рекомендации по ограничению распространения и искоренению инвазивных видов из рода Золотарник / Н.А. Ламан [и др.]. Минск: Право и экономика, 2024. $36\ c.$
- 3. Sheppard, A. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption / A. Sheppard, R. Shaw, R. Sforza // Weed Research. -2006. Vol. 46, N 2. P. 93–117.

- 4. Root, R.B. Patterns in population change and the organization of the insect community associated with goldenrod / R.B. Root, N. Cappuccino // Ecological Monographs. -1992.-Vol. 62. -P. 393–420.
- 5. Herzig-Root, A.L. Colonization of host patches following long-distance dispersal by a goldenrod beetle, $Trirhabda\ virgata\ /\ A.L.$ Herzig-Root // Ecological Entomology 1996. Vol. 21, N_{2} 4. P. 344-351.
- 6. Cappuccino, N. Oviposition behaviour of insects used in the biological control of weed / N. Cappuccino. // *In*: Proceedings of the X Int. Symp. on Biol. Control of Weeds, July 4-14, 1999 (ed. N.R. Spencer). Bozeman: Montana State University (MT, USA), 2000. P. 521–531.
- 7. Dohna, H. The distribution of eggs per host in a herbivorous insect intersection of oviposition, dispersal and population dynamics / H. Dohna // J. Animal Ecology. 2006. Vol. 75, $N_2 = 2$. P. 387–398.
- 8. Djeddour, D. Classical biocontrol of weeds in Europe are we pushing against an open door? / D. Djeddour, R. Shaw // Proceedings of the XIV Int. Symp. on Biological Control of Weeds, 2-7 March 2014, Kruger National Park, South Africa. Cape Town: University of Cape Town, 2014. P. 129-134.
- 9. Kalske, A. Insect herbivory selects for volatile-mediated plant-plant communication / A. Kalske [et al.] // Current Biology. − 2019. − Vol. 29, № 18. − P. 3128-3133.