DOI 10.37539/2949-1991.2025.28.5.021

УДК: 612.821

Богословская Лариса Валерьевна,

Старший преподаватель кафедры нормальной физиологии, Уральский государственный медицинский университет, Россия, г. Екатеринбург Bogoslovskaya Larisa Valeryevna, Ural State Medical University

Закандыкина Анна Сергеевна, студентка,

Уральский государственный медицинский университет, Россия, г. Екатеринбург Zakandykina Anna Sergeevna, Ural State Medical University

Филянкина Рината Александровна, студентка,

Уральский государственный медицинский университет, Россия, г. Екатеринбург Filiankina Rinata Aleksandrovna, Ural State Medical University

ВЛИЯНИЕ ЭМОЦИЙ НА КРАТКОСРОЧНУЮ ПАМЯТЬ У СТУДЕНТОВ И ПОДРОСТКОВ THE EFFECTS OF EMOTION ON SHORT-TERM MEMORY IN COLLEGE STUDENTS AND ADOLESCENTS

Аннотация: В представленной статье, изучено влияние различных эмоциональных состояний (нормальное состояние, положительные эмоции, раздражение, испуг) на краткосрочную память у студентов и подростков. Проведено тестирование респондентов на запоминание 12 двузначных чисел в разных эмоциональных условиях. Результаты показали, что положительные эмоции улучшают запоминание, тогда как негативные (раздражение, испуг) снижают эффективность краткосрочной памяти.

Abstract: In the presented article, the influence of different emotional states (normal state, positive emotions, irritation, and fright) on short-term memory in students and adolescents is studied. A test with memorization of 12 two-digit numbers in different emotional conditions was conducted. The results showed that positive emotions improve memorization, while negative emotions (irritation, fright) reduce the efficiency of short-term memory.

Ключевые слова: Краткосрочная память, эмоции, студенты, подростки, тестирование, сравнение.

Keywords: Short-term memory, emotion, students, adolescents, testing, comparison.

Введение. Эмоции играют ключевую роль в процессе обучения и запоминания информации, особенно у студентов и подростков, находящихся в стадии активного формирования своей личности и когнитивных навыков. Эмоциональные переживания могут как положительно, так и негативно влиять на память, а также могут влиять на мотивацию и эффективность обучения. В условиях современного образования, где вопрос внимания к состоянию учащихся становится все более актуальным, понимание того, как эмоции влияют на когнитивные процессы, приобретает особую значимость.

Материалы и методы. В исследовании приняли участие 104 респондента, разделенные на две группы: школьная группа (53 человека) – учащиеся 6-х классов МАОУ СОШ №34 Каменск-Уральского городского округа в возрасте 12-13 лет, и студенческая группа (51 человек) – студенты 2-го курса Уральского государственного медицинского университета в возрасте 19-21 года. Исследование проводилось в форме тестирования, состоящего из четырех последовательных этапов с 15-минутными интервалами между ними для минимизации эффектов усталости и интерференции. Экспериментальный протокол включал: 1) базовое тестирование (контрольное условие) с зачитыванием 12 двухзначных чисел (30 секунд) и последующим их воспроизведением (60 секунд); 2) тестирование в условиях негативного аффекта с предъявлением акустического стимула (скрежет пенопласта по стеклу, в течение 10 секунд) и повторением процедуры запоминания; 3) тестирование в условиях позитивного аффекта после демонстрации 2-минутного видеоролика с забавными действиями домашних животных; 4) тестирование в условиях острого стресса после предъявления неожиданного громкого звука (в течение 0.5 сек). Для обеспечения достоверности исследования контролировались временные параметры (сессии проводились в 9:00-12:00), условия окружающей среды (звукоизолированное помещение с оптимальной температурой), давалась стандартизированная инструкция и менялся порядок предъявления чисел между этапами. Исследование соответствовало этическим нормам: получено информированное согласие, обеспечена возможность прерывания участия, проводилась психологическая разгрузка после стрессовых воздействий, все негативные стимулы находились в пределах физиологических норм. Для обработки данных использовались описательная статистика, что обеспечило надежную основу для получения валидных результатов.

Структуры лимбической системы (limbus – край) расположены в виде кольца на границе новой коры, отделяющей ее от ствола мозга, и включают в себя: гиппокамп, миндалевидное тело, поясную и парагиппокампальную извилины [5].

Лимбическая система участвует как в формировании эмоций, так и в процессах памяти и обучения. Через механизм эмоций лимбическая система улучшает приспособление организма к изменяющимся условиям среды.

Память – способность организма приобретать, сохранять и воспроизводить в сознании информацию и опыт. Накопление, хранение и воспроизведение информации – общие свойства нейронных сетей [5].

Существует несколько общепринятых классификаций памяти, для рассмотрения была выбрана классификация, в основу которой заложена не длительность хранения информации, а механизм, при этом идея длительности хранения информации была сохранена.

В этом случае целесообразно выделить три вида памяти:

- мгновенная память отпечаток, энграмма внешних воздействий, отражающая явления последействия в анализаторах в виде ощущений [5];
- кратковременная память- система мозга, которая временно удерживает и обрабатывает информацию необходимую для выполнения текущих задач, ее основой являются электрофизиологические процессы [5];
- долговременная память хранение информации в виде структурных и биохимических изменений в нейронах головного мозга [5];

Кратковременная память — это компонент памяти, который удерживает небольшое количество информации в активном, легкодоступном состоянии в течение короткого периода, обычно от нескольких секунд до минуты. Длительность кратковременной памяти, повидимому, составляет от 15 до 30 секунд, а ее емкость ограничена, часто считается, что она составляет около 7±2 элементов (по Миллеру) [15].

Кратковременная память имеет три ключевых аспекта:

- 1. Ограниченная вместимость (одновременно можно хранить только около 7 предметов) [15];
- 2. Ограниченная продолжительность (хранение данных очень хрупкое, и информация может быть утеряна из-за отвлечения внимания или с течением времени) [15];
- 3. Кодирование (в первую очередь акустическое, даже перевод визуальной информации в звуки) [15].

Одна из гипотез о механизме кратковременной памяти является гипотеза о реверберации (циркуляции) возбуждения по замкнутым цепочкам нейронов. Считается, что в замкнутых нейрональных цепочках циркуляция длится минуты, сохраняя информацию в виде последовательности импульсов, передающихся от нейрона к нейрону

Кратковременная память — это вторая стадия модели многохранилищной памяти, предложенной Аткинсоном-Шиффрином, далее она путем повторения, организации или связыванием с уже имеющимися знаниями переходит в долговременную [15], в общем этот процесс называется консолидацией памяти.

Особо важную роль в формировании памяти играют гиппокамп и связанные с ним задние зоны лобной коры. Их деятельность необходима для консолидации памяти.

гиппокампа, включая парагиппокампальную извилину, неокортические области, не является местом хранения воспоминаний, но играет решающую роль в формировании новых воспоминаний и их последующей реактивации. Гиппокамп, повидимому, имеет ограниченную емкость, но получает информацию быстро и автоматически. Со временем первоначально доступная информация является постоянной в других структурах мозга, особенно в коре, независимо от активности самого гиппокампа. Решающим механизмом этой передачи является реактивация (воспроизведение) конфигураций нейронной активности. Эта реактивация под гиппокампом приводит к созданию прямых связей между кортикальными следами, а затем к формированию интегрированного представления в неокортексе, включая кору визуальной ассоциации для зрительной памяти, височную кору для слуховой памяти и левую боковую височную кору для знания значений слов. Другими словами, связанный гиппокамп и медиальные висцеральные структуры имеют решающее значение для проведения события в целом, поскольку они распределяют следы памяти организованным образом [9].

Электрофизиологической особенностью гиппокампа является его уникальная способность отвечать на стимуляцию длительной (в течение часов, дней и даже недель) посттетанической потенциацией, которая приводит к облегчению синаптической передачи и служит основой формирования памяти.

Ультраструктурным признаком участия гиппокампа в образовании памяти является увеличение числа шипиков на дендритах его пирамидных нейронов в период активного обучения, что свидетельствует об усилении синаптической передачи информации, поступающей в гиппокамп [5].

Эмоции — это сложные психофизиологические состояния, являющиеся реакцией организма на действие внешних или внутренних раздражителей, сопровождаемые ярко выраженными субъективными переживаниями, физиологическими изменениями и выразительным поведением. Это одна из форм психической деятельности. В качестве внутренних раздражителей выступают патологические процессы (заболевания внутренних органов). Внешние раздражители — это неприятные или, напротив, приятные ситуации, болевые воздействия и т.д.

Каждая эмоция также сопровождается импульсом или внутренним побуждением к тому или иному действию. Способ выражения зависит от интенсивности эмоции. Физические и

физиологические компоненты относятся к реальным движениям тела. Эмоция всегда вызывается определённым стимулом, которым может быть любой человек, предмет или событие. Разные люди могут по-разному реагировать на один и тот же стимул.

Эмоции также могут быть классифицированы по степени интенсивности (от слабой до сильной), продолжительности (от короткой до длительной) и типу (например, социальные, сексуальные, привязанности, амбивалентные и т.д.). Кроме того, эмоции могут перекрываться и взаимодействовать друг с другом, что делает классификацию и понимание их более сложным [3].

Ключевой структурой для возникновения эмоций является гипоталамус. Также, важную роль в возникновении эмоций играют поясная извилина и миндалина. Поясная извилина выполняет роль интегратора различных систем мозга, участвующих в формировании эмоций [5].

Существует несколько теоретических моделей, которые пытаются объяснить механизмы возникновения и проявления эмоций, некоторые из которых становятся все более популярными. Одна из таких моделей предлагает, что эмоции проявляются в результате взаимодействия трех основных компонентов: физиологического возбуждения, когнитивного оценивания и культурных и социальных норм. Таким образом, когнитивное оценивание (которое основано на представлениях, убеждениях и ожиданиях человека) может изменять степень возбуждения, вызванного внешними стимулами, а социальные нормы и культурные ценности могут повлиять на то, какие эмоции будут выражены и как они будут регулироваться. Другая модель предлагает, что эмоции возникают в результате сложных сетей нейронных сигналов и взаимодействий между различными участками мозга, которые связаны с оцениванием стимулов, реакцией на них и выражением эмоций [3].

Большинство эмоциональных состояний отражается на особенностях поведения человека, и поэтому они могут быть изучены с использованием не только субъективных, но и объективных методов.

Аффект — наиболее мощный вид эмоциональной реакции. Аффектами называют интенсивные, бурно протекающие и кратковременные эмоциональные вспышки. Примерами аффекта могут служить сильный гнев, ярость, ужас, бурная радость, глубокое горе, отчаяние, испуг.

Аффект специфичен тем, что дезорганизует работу сознания. В состоянии аффекта возникает чрезвычайно сильное эмоциональное возбуждение, которое, затрагивая двигательные центры коры головного мозга, переходит в двигательное возбуждение. В состоянии аффекта человеку трудно предвидеть результаты своих действий, поскольку меняется характер протекания процессов мышления [4]. Однако, исследования показывают, что положительные и отрицательные эмоции могут оказывать различное влияние на когнитивные процессы.

В стрессовых ситуациях, таких как испуг, резко повышается выработка адреналина и кортизола надпочечниками. Степень активации этих гормональных систем зависит от тяжести, а также типа используемого стрессора [13]. Хотя адреналин и глюкокортикоиды взаимодействуют, влияя на консолидацию памяти, их эффекты инициируются через разные механизмы.

Поскольку адреналин нелегко пересекает гематоэнцефалический барьер, периферический центральный путь должен быть вовлечен в опосредованние эффектов адреналина на мозговую активность при модуляции консолидации памяти. Результаты многих экспериментов указывают на то, что эффекты адреналина на консолидацию памяти инициируются активацией периферических β -адренорецепторов, расположенных на вагальных афферентах, которые проецируются в ядро одиночного пути в стволе мозга.

Норадренергические проекции, возникающие в ядре одиночного пути, иннервируют структуры переднего мозга, участвующие в обучении и памяти, включая миндалевидное тело, но также могут влиять на высвобождение норадреналина через проекции в парагигантоцеллюлярное ядро в нижней части продолговатого мозга, которое проецируется в голубое пятно. Норадренергическая система голубого пятна рассматривается как обширная система с проекциями на многие области, участвующие в обработке памяти, включая миндалевидное тело, гиппокамп и префронтальную кору.

Возбужденное миндалевидное тело регулирует консолидацию памяти, влияя на хранение информации в эфферентных областях мозга. Миндалевидное тело взаимодействует со многими областями мозга, включая гиппокамп, гипоталамус, хвостатое ядро и островную, энторинальную и переднюю поясную кору, в регулировании консолидации различных типов информации. На гипоталамус миндалевидное тело оказывает возбуждающее влияние. В ответ на возбуждение гипоталамус активирует симпатическую нервную систему и посылает сигнал через вегетативные нервы в надпочечники, которые усиливают выработку адреналина. Миндалевидное тело также взаимодействует с гиппокампом в регулировании эффектов стресса (гормонов) на консолидацию памяти контекстуальных/пространственных компонентов обучения.

Глюкокортикоиды (кортизол) обладают высокой липофильностью и легко проникают в мозг, связываясь с минералокортикоидными рецепторами и глюкокортикоидными рецепторами. Глюкокортикоидные рецепторы активируются только во время стресса и на циркадном пике. Несколько исследований с использованием фармакологических и генетических методов показывают, что эффекты глюкокортикоидов, модулирующие память, избирательно включают активацию глюкокортикоидных рецепторов, широко представленных в гиппокампе. Активация глюкокортикоидных рецепторов влияет на экспрессию генов, синаптическую пластичность и структуру нейронов [13]. В основе синаптической пластичности, которая является основой обучения и памяти, лежат механизмы долговременной потенциации и долговременной депрессии, на которые кортизол также оказывает влияние.

Раздражение, по всей видимости имеет схожие со стрессом эффекты. Оно вызывает стресс, в ответ на который надпочечники начинают вырабатывать кортизол, который нарушает процессы формирования памяти в гиппокампе. Раздражение также сопровождается повышением уровня тревоги и отвлечением внимания, это снижает когнитивные ресурсы необходимые человеку для восприятия и запоминания новой информации. Раздражение также сужает фокус внимания, заставляя сосредотачиваться только на источнике раздражения и игнорировать другую поступающую информацию.

Положительные эмоции также являются частью положительного аффекта и характеризуются высоким положительным эмоциональным состоянием. Они стимулируют выработку дофамина и окситоцина, которые играют важную роль в процессах формирования памяти, а также снижают выработку кортизола. Дофаминовые нейроны расположенные в области покрышки, проецируются на миндалевидное тело. В миндалевидном теле находятся дофаминовые D1-подобные рецепторы, которые усиливают синаптическую пластичность и консолидацию эмоциональных воспоминаний. Дофамин трансформирует длительную депрессию-процесс, который ослабляет синапсы- в долгосрочную потенциацию, и эффективно преобразует слабые синаптические связи в более сильные, путем увеличения производства белков [12].

Положительные эмоции также способствуют расширению фокуса внимания, позволяя замечать больше деталей, а также стимулировать более глубокую и осмысленную обработку информации.

Результаты. В ходе исследования были установлены следующие показатели кратковременной памяти у студентов: среднее значение воспроизведённых чисел в нейтральном состоянии -7.04 (стандартное отклонение ± 1.31); при положительном эмоциональном воздействии -8.25 чисел (стандартное отклонение ± 1.36); в состоянии испуга -6.55 чисел (стандартное отклонение ± 2.03); после раздражающего воздействия -5.45 чисел (стандартное отклонение ± 1.58). Представленные данные отображены на Рисунке 1. Наблюдается повышение показателей воспроизведённых чисел при положительных эмоциях и снижение при негативных воздействиях. Разброс значений наиболее выражен в состоянии испуга (стандартное отклонение=2.03). Полученные данные свидетельствуют о влиянии эмоционального состояния на продуктивность запоминания.

Рисунок 1. Результаты тестирования для студентов Уральского государственного медицинского университета; количество правильно воспроизведённых двузначных чисел (из 12) в разных эмоциональных состояниях.

Среди школьников в ходе исследования были получены следующие показатели кратковременной памяти: в нейтральном состоянии среднее количество запомненных чисел составило 6.47 (стандартное отклонение ± 1.47); при положительном эмоциональном воздействии показатель увеличился до 7.19 чисел (стандартное отклонение ± 1.98), то есть увеличение продуктивности на 11.1%, что представляет собой максимальный результат по сравнению с нейтральным состоянием; после воздействия, вызывающего испуг, среднее значение снизилось до 6.11 чисел (стандартное отклонение ± 1.89), демонстрируя уменьшение показателя на 5.6%относительно нейтрального состояния; наименьший результат был зафиксирован при раздражающем воздействии -4.81 воспроизведённых чисел (стандартное отклонение ± 1.94), что говорит о снижении продуктивности на 25.7% по сравнению с исходным уровнем. Наибольшая вариативность результатов наблюдалась при положительном эмоциональном воздействии (стандартное отклонение ±1.98). Представленные данные отображены на Рисунке 2. Полученные результаты демонстрируют существенное влияние эмоционального состояния на продуктивность кратковременной памяти у школьников, причем положительные эмоции способствуют улучшению запоминания, тогда как негативные воздействия, особенно раздражающие факторы, приводят к значительному снижению показателей.

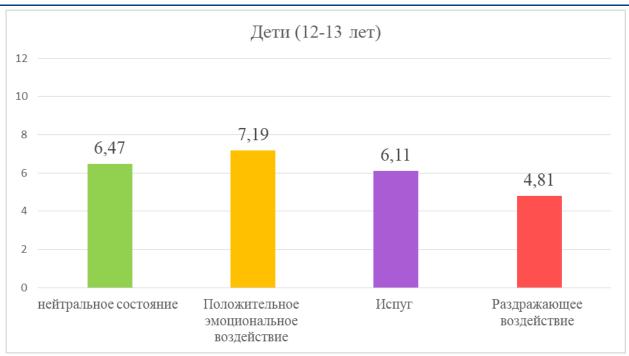


Рисунок 2. Результаты тестирования для учеников муниципального автономного общеобразовательного учреждения средней общеобразовательной школы №34 Каменск- Уральского городского округа; количество правильно воспроизведённых двузначных чисел (из 12) в разных эмоциональных состояниях.

Обсуждение. Проведённый эксперимент позволил выявить значимое значительное влияние различных эмоциональных состояний на показатели кратковременной памяти у двух возрастных групп испытуемых. Наибольшая продуктивность запоминания наблюдалась в условиях положительного эмоционального состояния как у школьников (7.19 чисел), так и у студентов (8.25 чисел), что соответствует положениям теории расширения и построения [10], согласно которой позитивные эмоции расширяют когнитивные ресурсы. Напротив, минимальные результаты были зафиксированы при воздействии раздражающего фактора (4.81 у школьников и 5.45 у студентов). Этот феномен может объясняться двумя взаимодополняющими механизмами: эффектом когнитивной интерференции. негативные эмоции конкурируют за ограниченные ресурсы внимания [14]; активацией миндалевидного тела, подавляющего гиппокампальную активность [2]. Показатели в состоянии испуга продемонстрировали значительный разброс данных, амбивалентную природу стрессового воздействия на мнемические процессы [8]: у части испытуемых наблюдалась мобилизация ресурсов, у других – когнитивная дезорганизация. Возрастные различия проявились в большей устойчивости студентов к негативным воздействиям, что может быть связано с завершением созревания префронтальной коры к юношескому возрасту [7], снижением активности миндалины [11], меньшим всплеском кортизола и половых гормонов (снижение эмоциональной лабильности) [1], а также с ограниченным арсеналом стратегий саморегуляции у подростков [6], [16]. Полученные результаты имеют важное практическое значение для организации образовательного процесса, подчёркивая необходимость создания благоприятного эмоционального фона для оптимизации учебной деятельности. Проведённое исследование вносит вклад в понимание механизмов взаимодействия эмоциональных и когнитивных процессов и подчёркивает важность комплексного подхода к изучению мнемической деятельности человека.

Заключение. Проведенное исследование демонстрирует значимое влияние эмоционального состояния на показатели кратковременной памяти *у* респондентов. Основные выводы:

- 1. Позитивные эмоции в среднем улучшают запоминание материала на 14%, но у студентов эффект выражен сильнее (+17.2%), чем у школьников (+11.1%).
- 2. Раздражение обучающихся оказывает наиболее разрушительный эффект (-22.6% у студентов и -25.7% у подростков), что требует особого контроля в образовательной среде.
- 3. Стрессовые состояния респондентов характеризуются наибольшей индивидуальной вариативностью результатов, однако при этом в среднем снижают продуктивность запоминания на 15% (-15.65% у школьников, -14.8% у студентов).
- 4. В то время как подростки демонстрируют повышенную чувствительность к негативным эмоциональным воздействиям, студенты, напротив, проявляют более выраженную способность к усвоению позитивных эмоциональных стимулов.

Полученные результаты имеют важное практическое значение для организации образовательного процесса, подчеркивая необходимость:

- Создания благоприятного эмоционального климата в учебных заведениях;
- Минимизации раздражающих факторов в процессе обучения;
- Учета индивидуальных особенностей реакции обучающихся на стрессовые ситуации.

Список литературы:

- 1. Адамовская, О. Н. Особенности нейровегетативного, гормонального и психоэмоционального статуса подростков на начальных этапах полового созревания / О. Н. Адамовская, И. В. Ермакова, Н. Б. Сельверова //Новые исследования. 2015. №3 (44).
- 2. Кашапов, Ф. Ф. Особенности биологии миндалевидного комплекса при тревоге и агрессивности / Ф. Ф. Кашапов // Эпоха науки. 2017. N = 10 C. 8-14
- 3. Кубанова, А. К. Эмоции в процессе их управления / А. К. Кубанова, О. В. Кравцов // Власть истории История власти. 2023. N = 46 C. 62-67.
- 4. Магомедова, X. Л. Характеристика эмоций / X. Л. Магомедова, Т. А. Шаруха // Мировая наука. -2018. -№5 (14).
- 5. Нейрофизиология и высшая нервная деятельность детей и подростков: Учеб. пособие для студ. дефектол. фак. высш. пед. учеб. заведений. М.: Издательский центр «Академия», $2000.-400~\rm c.$
- 6. Симонова, Г. И. Проблемы саморегуляции в младшем подростковом возрасте/ Г. И. Симонова, Ю. А. Гущина // Вестник Удмуртского университета. Серия «Философия. Психология. Педагогика». -2021.-N23. -C. 287-293.
- 7. Цехмистренко, Т. А. Возрастные морфофункциональные изменения префронтальной коры большого мозга у детей и подростков / Т. А. Цехмистренко, Д. К. Обухов, Н. А. Черных // Оригинальные статьи. -2020.-N24 С. 35-40
- 8. Шогенов, Б.Ю. Влияние стресса на человека / Б. Ю. Шогенов, Н. Б. Кумахова // КиберЛенинка-2023.
- 9. Cascella, M. Short-Term Memory Impairment / Cascella M, Al Khalili Y. // StatPearls [Internet]. -2025.
- 10. Cuncic, A. An overview of broaden and build theory / Cuncic, A. // Verywell Mind. 2023.
- 11. Doucet, G. E. Changing role of the amygdala in affective and cognitive traits between early and late adulthood / Doucet, G. E., Kruse, J. A., Hamlin, N [et all] // Frontiers in Psychiatry. 2023. doi: 10.3389/fpsyt.2023.1033543
- 12. Longo, F. Dopamine: Making memories / Longo, F. // eLife. 2024. doi: 10.7554/eLife.102837

РАЗДЕЛ: Здравоохранение, медицина и спорт Направление: Медицинские науки

- 13. McIntyre, C. K. Adrenal Stress Hormones and Enhanced Memory for Emotionally Arousing Experiences / McIntyre, C. K., Roozendaal, B. // Neural Plasticity and Memory: From Genes to Brain Imaging. CRC Press/Taylor & Francis. 2007.
- 14. Mueller, S. C. The influence of emotion on cognitive control: relevance for development and adolescent psychopathology / Mueller, S. C. // Frontiers in Psychology. -2011 2, 327.
- 15. Olivia G-E. Short-Term Memory In Psychology: Types, Duration & Capacity / Olivia G-E, Saul McLeod// SimplyPsychology. 2025.
- 16. Opdenakker M-C. Developments in early adolescents' self-regulation: The importance of teachers' supportive vs. undermining behavior/ Opdenakker M-C // Frontiers in Psychiatry. 2022. doi: 10.3389/fpsyg.2022.1021904