DOI 10.37539/2949-1991.2025.28.5.039 УДК 621.3.02

Жуй Ци Ван,

студент группы ЭПм-23 Энергетического факультета, Забайкальский государственный университет г. Чита, Россия

Балябин Алексей Александрович,

студент группы ЭПм-23 Энергетического факультета, Забайкальский государственный университет г. Чита, Россия

Научный руководитель:

Какауров Сергей Владимирович,

канд. техн. наук, доцент кафедры энергетики, Забайкальского государственного университета г. Чита, Россия

РАЗЛИЧИЯ В ТРЕБОВАНИЯХ К КАЧЕСТВУ ЭЛЕКТРОЭНЕРГИИ В КИТАЕ И РОССИИ

Аннотация: У Китая и России много общего в энергетическом секторе. Оба переживают быстрый экономический рост и институциональную трансформацию, а также сталкиваются с проблемами регионального распределения ресурсов и несбалансированного развития.

Ключевые слова: качество электроэнергии, Китай, Россия, напряжение, частота, гармоники.

Требования к качеству электроэнергии в энергосистеме в основном состоит из трех частей (напряжение, частота и форма волны).

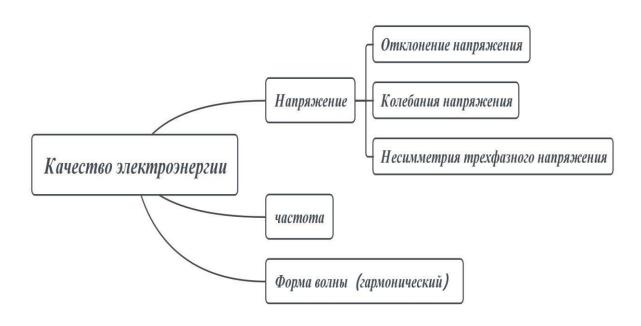


Рисунок 1 – Показатели качества электроэнергии

Ниже приведены китайские и российские стандарты качества электроэнергии, представленные в виде таблиц.

Направление: Технические науки

Требования к отклонениям напряжения

Таблица 1

Нормативный документ	Показатель	Уровень напряжения	Допустимы е пределы
GB 12325-20085.	Допуск напряжения питания	35кв и выше	не более чем ±10%
		10кв и ниже	±7%
		220B	+7%, -10%
ГОСТ 32144-2013	Медленные изменения напряжения	Все классы напряжения	не более чем 10%

Согласно ГОСТ 32144-2013: положительные и отрицательные отклонения напряжения в точке передачи электрической энергии не должны превышать 10 %.6.

Колебания напряжения и мершания

Таблина 2

Нормати- вный документ	Показатель	Уровень напряжения	Допустимые	пределы
			Значение кратков ременного мерцани pst	Значение мерцания при длительном времени plt
GB	Качество электро-	высокое	0.8	0.6
12326-	энергии, колебания	напряжение	0.0 (1.0)	0.7 (0.0)
20084.	напряжения и мерцание	среднее напряжение	0.9 (1.0)	0.7 (0.8)
		низкое напряжение	1.0	0.8
ГОСТ	Колебания		1.38	1.0
32144-	напряжения и			
2013	фликер			

Колебания напряжения и мерцание: любое внезапное изменение реактивной мощности, вызванное ударной нагрузкой, вызывает мерцание, продолжительность которого обычно измеряется секундами.

Согласно ГОСТ 32144-2013: кратковременная доза фликера Pst не должна превышать значения 1.38, длительная доза фликера Plt не должна превышать значения 1.0.6.

Таблица 3

Степень несимметрии

Нормативный документ	Показатель	Допустимые пределы
GB/T15543-20082.	Качество электроэнергии	Обычно разрешен о 2% короткое время 4%

РАЗДЕЛ: Инженерное дело, технологии и технические науки Направление: Технические науки

ГОСТ 32144-2013	Несимметрия напряжений в трехфазных	Обычно разрешено	
	системах	2%	
		Не более короткого	
		4%	

Несимметрия трехфазной системы напряжения вызвана нерациональным распределением трехфазной нагрузки и постоянно меняющейся мощностью нагрузки. Согласно ГОСТ 32144-2013: значения коэффициентов несимметрии напряжений по обратной последовательности K2U и несимметрии напряжений по нулевой последовательности K0U в точке передачи электрической энергии обычно разрешено не более 2% в длительном режиме и не более 4% кратковременно.6.

Таблица 4

Нормативный документ	Показатель	Допустимые пределы
GB/T 15945-20081.	Отклонение частоты	Обычно разрешено 0.2Hz не
ГОСТ 32144-2013	энергосистемы Отклонение частоты	более чем 0.4Hz Обычно разрешено
1 0 0 1 0 2 1 1 1 2 0 1 0		0.2Hz, но не более чем 0.4Hz

Согласно ГОСТ 32144-2013: Номинальное значение частоты напряжения электропитания в электрической сети равно 50 Гц.

Отклонение частоты Обычно разрешено 0.2 Hz, но не более чем 0.4 Hz.6.

Таблица 5

Допустимые показатели гармоник

Нормативный документ	Показатель	Уровень напряжения	Допустимые пределы		
GB/T14549- 19933.	Гармоники коммунальной сети		Коэффициент общ их гармонических искажений напряжения	Един- ственное число	Четные числа
		0.38	5.0	4.0	2.0
		6,10	4.0	3.2	1.6
		35,66	3.0	2.4	1.2
		110	2.0	1.6	0.8
ГОСТ	Гармонические	0.38		6.0	2.0
321442013	составляющие	6-25		4.0	1.5
	напряжения	35		3.0	1.0
		110-220		1.5	0.5

В Китае и России действуют разные стандарты качества электроэнергии. Китайский стандарт описывает нормативный документ «Стандарт качества электроэнергии GB 50059-2011», а российский стандарт – ГОСТ 32144-2013.

В Китае более распространено регулирование качества электроэнергии путем разделения разных уровней напряжения. Требования к качеству электроэнергии, к таким показателям как отклонения напряжения, трехфазная несимметрия и частота, практически одинаковы для России и Китая.

Допустимые пределы колебаний напряжения и мерцания в Китае разделены на три части: высокое, среднее и низкое напряжение, среди которых разделение переменных мерцания более точное.

Что касается гармоник, в Китае действуют более строгие стандарты для низкого напряжения, а в России для высокого напряжения.

Список литературы:

- 1. GB/T 15945-2008, 电能质量电力系统频率偏差 [S]. 北京: 中国国家 标 准 化 管理 委员会, 2008. -Режим доступа: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=2527466C56B6FB
- DDB31DA5547109CEA6. (дата обращения 14.09.24)
- 2. GB/T 15543-2008,电能质量三相电压不平衡 [S]. 北京: 中国国家标准化管理委员会,2008-Режим доступа:https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=2527466C 56B6FBDDB31DA5547109CEA6. (дата обращения 14.09.24)
- 3. GB/T 14549-1993, 电能质量公用电网谐波 [S]. 北京: 中国国家标准 化 管 理 委员会, 1993. Режим доступа:https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=10A576E61901

DA59E9A6AC555C2BAFD1. (дата обращения 14.09.24)

4. GB/T 12326-2008 ,电能质量 电压波动和闪变 [S] . 北京: 中国国 家 标 准 化 管理 委 员 会 , 2008 . - Режим

доступа:https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=DE93BEE

А7ВА424769С5ВА3А86В9Е2С6С. (дата обращения 14.09.24)

5. GB/T 12325-2008, 电能质量供电电压偏差 [S]. 北京: 中国国家标准 化 管 理 委员会, 2008. - Режим доступа:https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=75EBBCF838A

A40D281EDA854B8F63AD7. (дата обращения 14.09.24)

6 . ГОСТ 32144-2013 Нормы качества электрической энергии в си стемах электроснабжения общего назначения. – Режим доступа:https://docs.cntd.ru/document/1200104301 (дата обращения 14.09.24)