Фанян Дмитрий Сергеевич, аспирант, Набережночелнинский институт ФГАОУ ВПО «Казанский (Приволжский) федеральный университет»

НЕЙТРАЛИЗАЦИЯ ПОВЕРХНОСТНЫХ ДЕФЕКТОВ ДЕТАЛЕЙ АВТОМОБИЛЯ

Аннотация: исследована эффективность дробеструйной обработки балки передней оси автомобиля и шатунов двигателя. Показано, что обработка приводит к упрочнению поверхностного слоя, нейтрализации концентраторов напряжений и повышению усталостной прочности деталей.

Ключевые слова: дробеструйная обработка, детали автомобиля, поверхностные дефекты, упрочнение.

Детали подвески автомобиля в условиях эксплуатации подвергаются интенсивному воздействию переменных механических и вибрационных нагрузок, что вызывает развитие поверхностных дефектов [4]. Одним из конструктивных элементов, испытывающих наибольшие нагрузки, является балка передней оси. Повреждение этой детали влечёт за собой снижение безопасности транспортного средства и затратные ремонты [2]. Поверхностные концентраторы напряжений, возникающие в процессе изготовления и эксплуатации, служат зародышами усталостных трещин.

К числу критически нагруженных деталей, требующих повышения усталостной прочности, относятся шатуны двигателя внутреннего сгорания. Они служат звеном между поршнем и коленчатым валом и воспринимают значительные переменные нагрузки при каждом рабочем цикле. Конструктивно шатун состоит из верхней головки, стержня (стебля) и нижней головки. Стержень, как правило, не подвергается окончательной механической обработке, что делает его уязвимым к поверхностным дефектам. Одним из таких дефектов является обезуглероженный слой, существенно снижающий усталостную долговечность и повышающий риск разрушения при циклическом нагружении [1].

Наиболее рациональным способом повышения ресурса деталей автомобиля является упрочнение поверхностного слоя с созданием остаточных напряжений сжатия [3]. Для повышения долговечности и надёжности деталей автомобиля разработаны технологии их дробеструйной обработки. Этот способ позволяет эффективно удалять обезуглероженный слой, нейтрализовать поверхностные дефекты и одновременно их упрочнять.

Балка передней оси (БПО) изготавливается из стали 45X, подвергается закалке при температуре $860\pm10^{\circ}\text{C}$ и отпуску при $550\pm20^{\circ}\text{C}$ для получения твердости в диапазоне 285-321 НВ. В процессе производства на поверхности поковки формируется обезуглероженный слой глубиной от 0,12 до 0,30 мм (рисунок 1), который негативно сказывается на прочностных характеристиках. В работе применена технология дробеструйной обработки с использованием стальной литой дроби ДСЛУ 2,2 (твердость 406-494 HV, ГОСТ 11964-81).

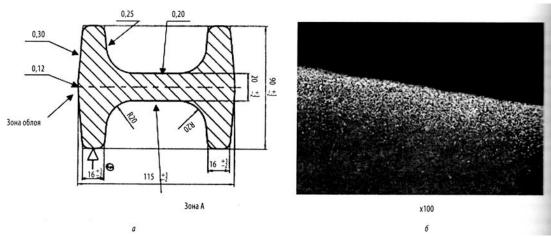


Рис. 1 — Глубина обезуглероженного слоя по контуру таврового сечения центральной части БПО (a) и микроструктура стали с обезуглероженным слоем на поверхности (б) в зоне А

Шатуны изготавливаются из стали 40 XH2MA горячей штамповкой при нагреве до 1220°C с последующей закалкой при 860°C и отпуском при 660°C . В процессе термообработки на поверхности формируется обезуглероженный слой толщиной 0,1-0,5 мм (рисунок 2), снижающий усталостную прочность.

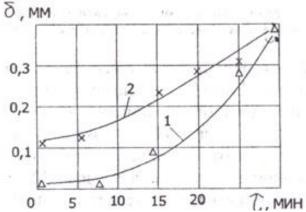


Рис.2 – Влияние времени нахождения заготовок в индукторе на обезуглероживание поверхности обточенного (кривая 1) и необточенного (кривая 2) прутка

Для достижения оптимальных результатов упрочнения балки передней оси определено, что лучше всего использовать дробь ДСЛУ 2,2 и выдерживать время обработки в пределах 15-20 минут.

Дробеструйная обработка шатунов стальной дробью размером 0,9–1,5 мм в течение 10–30 минут повышает микротвердость поверхностного слоя до уровня сердцевины (рисунок 3) и создаёт сжимающие остаточные напряжения 300–500 МПа, что увеличивает долговечность шатунов в 3,5–5,5 раза (таблица 1).

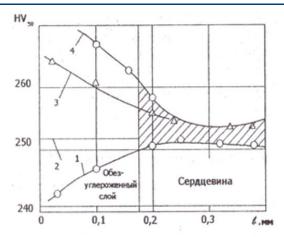


Рис. 3 — Распределение микротвердости по глубине обезуглероженного слоя на поковках после термического улучшения без дробеструйной обработки (кривая 1) и после дробеструйной обработки в течение 10 минут (кривая 2), 20 минут (кривая 3) и 30 минут (кривая 4):

Лолговечность шатунов

Таблица 1

долговствоств шатунов				
Амплитуда нагрузки, кН	Обезуглероженный слой отсутствует, время очистки 10 минут	Глубина обезуглероженного слоя 0,17, мм		
		Без очистки	Время очистки 10 минут	Время очистки 30 минут
120	70 000	60 000	40 000	80 000
95	80 000	90 000	160 000	220 000
70	250 000	170 000	600 000	900 000

Список литературы:

- 1. Влияние технологической операции правки на механические и эксплуатационные свойства автомобильных деталей. Обзорная информация: Серия XIII «Технология автомобилестроения»; М.: НИИАвтопром, 1982. 60с.
- 2. Когаев В. П., Махутов Н. А., Гусенков А. П. Расчет деталей машин и конструкций на прочность и долговечность. М.: Машиностроение, 1985. 224 с.
 - 3. Саверин М. М. Дробеструйный наклеп. М.: Машгиз, 1955. 312 с.
- 4. Турилина В. Ю. Материаловедение. Механические свойства металлов. Термическая обработка металлов. Специальные стали и сплавы: учебное пособие. М.: МИСИС, 2013. 154 с.