УДК 504.064.2

Кочетова Жанна Юрьевна,

доктор географических наук, доцент, доцент ВУНЦ ВВС «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина», Воронеж

Пантелеев Дмитрий Александрович,

соискатель ученой степени кандидата географических наук, ВУНЦ ВВС «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина», Воронеж

Базарский Олег Владимирович,

доктор физико-математических наук, профессор, профессор ВУНЦ ВВС «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина», Воронеж

ИССЛЕДОВАНИЕ ЗАГРЯЗНЕНИЯ ПОЧВ ВОРОНОК РАЗЛИЧНОГО ПРОИСХОЖДЕНИЯ И ВРЕМЕНИ ОБРАЗОВАНИЯ (НА ПРИМЕРЕ ПОЛИГОНА ОБЩЕГО НАЗНАЧЕНИЯ)

Аннотация. Проведен развернутый химический анализ почв (грунтов), отобранных из воронок на полигоне общего назначения в пригороде Воронежа. Исследования проводили в воронках от авиационных бомб, снарядов и утилизации боеприпасов, которые были образованы в различные периоды времени. Установлены закономерности концентрационного распределения металлов и полуметаллов по высоте воронок и в зависимости от давности их образования.

Ключевые слова: загрязнение почв, военный полигон, тяжелые металлы, мышьяк, воронки, военная экология.

Экологический ущерб от ведения боевых действий, эксплуатации военных объектов, проведения учений колоссален и нарастает с каждым годом. Это вызвано масштабами военной деятельности и длительностью восстановления природных систем. До настоящего времени в почвах, подземных водах обнаруживают продукты распада взрывчатых, отравляющих веществ и других экологически опасных соединений со времен Первой мировой войны. В западных странах составляются реестры загрязнения почв в результате военной деятельности, главная цель которых — оценка экологической ситуации на масштабных территориях, разработка оптимальных мероприятий по ликвидации последствий и дальнейшего использования в мирных целях земель законсервированных полигонов, военных баз, складов оружия и боеприпасов. Проводимые исследования во многом ангажированы и не имеют единой методики оценки экологической ситуации даже в пределах одного штата или округа. Например, оценку загрязнения почв проводят по нескольким элементам (в основном от двух до шести), к которым чаще всего относятся свинец, цинк, медь, хром, мышьяк, олово. Допустимые концентрации элементов могут отличаться на 3—4 порядка в одной стране, а методики суммарного расчета загрязнения почв часто не имеют научного обоснования [1].

В РФ подобные исследования систематически не проводились. Есть разрозненные данные о содержании некоторых загрязнителей в почвах аэродромов, полигонов и на прилегающих к ним территориях [2, 3]. В этой работе представлены результаты развернутого химического исследования почв, отобранных из воронок от авиационных бомб, снарядов, а также из воронки, образовавшейся в результате утилизации огромного количества (~146 вагонов) боеприпасов времен Великой Отечественной войны.

Отбор проб, их анализ, расчеты суммарного загрязнения (Z_c) проводили по стандартным методикам, принятым в РФ [4]. Преобладающий тип почв на участках полигона с ненарушенным рельефом — черноземы слабовыщелоченные. В точках отбора проб на поверхности воронок установлено высокое содержание (до 75 %) среднезернистого песка с диаметром частиц 0,25–0,05 мм и физической глины <20 %. В приповерхностном слое почв на середине и дне воронок преобладает фракция с диаметром частиц 0,005–0,001 мм и содержанием физической глины \sim 70–80 %. Показатель кислотности солевой вытяжки исследуемых почв рНксі изменялся в интервале 6,6–7,2. Металлы и полуметаллы в почвах определяли методом рентгеновской спектрометрии с применением РФА S8 TIGER. Отбирали одну точечную пробу почв на дне воронки; по 4 пробы — на середине высоты воронки и ее кромке и делали из них две общие пробы.

Результаты анализа загрязнения почв представлены в таблице. Нормативы, приведенные в [4], превышены только по двум показателям – хрому (в 380–740 раз) и мышьяку (в 1,5 раза). Аномально высокое превышение ПДК хрома объясняется его высокой фоновой концентрацией в исследуемых почвах. Хром относится к высоко опасным загрязнителям (ІІ класс), поэтому уровень загрязнения почв по лимитирующему показателю можно оценивать, как «очень сильный». Мышьяк – чрезвычайно опасное вещество (І класс опасности), даже незначительное его превышение ОДК в почвах также относит их к рангу «очень сильно загрязненные».

В воронках II и III от авиационных снарядов максимальное содержание практически всех исследованных металлов (с вероятностью 74 и 78 %) обнаружено на кромке. Исключение составляют Cs, Sb, Sn, которые в этих воронках скапливаются на середине высоты или дне воронок. Си и Рb практически равномерно распределены по высоте воронок. Это можно объяснить тем, что металлы выносятся на поверхность грунтов взрывной волной и в довольно высоких концентрациях оседают вблизи воронки.

В воронке I наблюдается иная картина распределения металлов: концентрационный максимум установлен на середине высоты воронки в 58 % случаев, на кромке зафиксированы максимумы концентраций только для Ga и Zr. Предположительно, мощная взрывная волна при утилизации боеприпасов переносит загрязняющие вещества дальше от места подрыва. Об этом свидетельствуют глыбы грунта, разбросанные на расстоянии от 10 до 20 м от воронки. На дне этой воронки установлены относительно высокие концентрации Fe, Ni, Cu, As, Sn, Cs. Надо отметить, что здесь же находится большое количество осколков боеприпасов.

Таблица Распределение содержания элементов по высоте воронок

Точка пробоот-	Концентрация загрязнителя, мг/кг								
бора в воронке	V	Cr	Mn	Ni	Си	Zn	As	Sb	Pb
Воронка I, утилизация боеприпасов (диаметр $d=25$ м; глубина $h=8$ м)									
Кромка	42	35	420	10	9	18	3	6	25
h/2	45	42	710	12	9	21	3	6	27
Дно	43	41	400	15	17	19	4	5	23
Воронка II, новая от авиаснаряда ($d=12$ м; $h=6$ м)									
Кромка	31	31	630	14	7	16	2	5	18
h/2	24	20	290	7	7	10	1	6	12
Дно	23	26	290	4	8	11	1	8	13
Воронка III, старая от авиаснаряда ($d=10$ м; $h=4$ м)									
Кромка	38	33	390	8	4	14	2	5	18
h/2	17	15	200	15	5	8	н/о	7	8
Дно	21	19	190	7	6	9	н/о	6	11

РАЗДЕЛ: Математические и естественные науки Направление: Науки о Земле

Суммарное загрязнение грунта на кромке воронки, образованной в результате утилизации боеприпасов, выше \sim 1,6 раза, чем на поверхности воронок от взрыва авиационных снарядов. Вызвано это тем, что в воронке I обнаружено 18 металлов, концентрации которых существенно превышают фоновые. Тогда как в II и III воронках их количество составляло 15, а концентрации по отдельным металлам (Fe, Cu, Zr, Sb, Cs) были гораздо ниже. Суммарный показатель загрязнения почв Z_c на поверхностях воронок с различным временем образования практически одинаков, что подтверждает известные данные о медленном самовосстановлении грунтов при загрязнении их металлами [5].

Список литературы:

- 1. Кочетова Ж.Ю., Базарский О.В., Пантелеев Д.А. Экология почв военных полигонов: монография. Воронеж: «Научная книга», 2023. 184 с.
- 2. Кудельский А.В., Стародубова А.П., Феденя В.М. Экология территории бывших военных баз // ЛІТАСФЕРА. 1997. № 7. С. 153–156.
- 3. Кочетова Ж.Ю. Авиационно-ракетный кластер как новый класс объектов геоэкологического мониторинга // Географический вестник. 2019. №3 (50). С. 79–91.
- 4. СанПиН 1.2.3685-21. Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания. Постановление главного государственного санитарного врача РФ от $28.01.2021~\mathrm{r.}~\mathrm{N} \mathrm{v}$ 2. 635 с.
- 5. Kochetova Z.Y., Bazarskii O.V., Maslova N.V. Filtration of heavy metals in soils with different degrees of urbanization and technogenic load // Russian Journal of General Chemistry. 2018. T. 88. № 13. C. 2990–2996.