Семененко Екатерина Сергеевна,

магистрант, Санкт-Петербургский государственный архитектурно-строительный университет, Санкт-Петербург Ekaterina S. Semenenko, student, St. Petersburg University of Architecture and Civil Engineering

Летова Татьяна Алексеевна,

магистрант, Санкт-Петербургский государственный архитектурно-строительный университет, Санкт-Петербург Tatiana A. Letova, student, St. Petersburg University of Architecture and Civil Engineering

Заводчикова Мария Борисовна,

Кандидат геолого-минералогических наук, Доцент кафедры Геотехники Санкт-Петербургского государственного архитектурно-строительного университета, Санкт-Петербург Mariia B. Zavodchikova, Department of Geotechnics, St. Petersburg University of Architecture and Civil Engineering

ОЦЕНКА ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИХ ДАННЫХ ДЛЯ ПОДГОТОВКИ ИНФОРМАЦИОННОЙ ГЕОТЕХНИЧЕСКОЙ МОДЕЛИ EVALUATION OF ENGINEERING ANG GEOLOGICAL DATA WITH THE PURPOSE OF CREATING A GEOTECHNICAL INFORMATION MODEL

Аннотация: Целью данной работы являлась демонстрация эффективной методики обработки исходных данных по геологии на примере оцифровки, проверки и контроля качества исходных данных конкретного объекта в городе Санкт-Петербурге на основе классификатора описания инженерно-геологической информации для дальнейшего использования в информационном моделировании и решения задач территориального планирования.

Abstract: The purpose of this study was to demonstrate an effective methodology of structuring geological data with an example of digitization, revision

and quality control of a construction object located in Saint-Petersburg using geological descriptive classifier with a purpose of further usage of structurized data in information moduling and territorial planning.

Ключевые слова: информационное моделирование, инженерногеологические изыскания, основания и фундаменты, обработка исходных данных.

Keywords: information moduling, engineering and geological surveys, foundations, initial data.

Введение: Основой любого проекта, независимо от сферы деятельности, является исходная информация — именно на основе полученных входных данных строятся концепции и разрабатываются первоначальные решения. Отрицать же важность должного обеспечения проекта исходной информацией в таких сферах, как строительство — невозможно: качественные исходные данные являются основной качественных расчетов, лучшего прогнозирования рисков и тем самым повышают надежность и инвестиционную привлекательность проекта.

Постановление Правительства №2357 от 20.12.2022 [1] обозначает обязательным обеспечение объектов капитального строительства информационной моделью, таким образом на законодательном уровне необходимость должной информационной обеспеченности. утверждая Информационная модель, представляет собой совокупность всех данных об объекте, размещаемых в общей среде, и является достоверным источником информации об объекте на протяжение всего его жизненного цикла [2,3], . Информационное моделирование может служить инструментом решения вопросов территориального планирования, стратегического планирования[4,5], способствовать более точному прогнозированию рисков еще на этапе разработки, а также значительно экономить временные и финансовые ресурсы - но для построения качественной модели, выполняющей все эти функции, необходимо первоначально обеспечить качественные исходные данные.

Какие же критерии определяют качество исходных данных? Для эффективной работы необходимо, чтобы информация, вводимая в модель, соответствовала как минимум трем данным — унифицированность, пространственная увязка и возможности совместного использования [6]. Как правило, предоставленные архивные данные этим критериям не соответствуют, поэтому перед тем, как использовать их в проекте, необходимо произвести обработку, переходя от уровня архивных данных к уровню фондовых. Вопрос создания единой методики обработки исходных данных в настоящее время является актуальным.

Экспериментальная часть: В данной части работы приведен пример обработки исходных данных геологии города Санкт-Петербурга путем оцифровки и обработки архивных данных для конкретного объекта. Обработка исходной архивной информации произведена при помощи разработанного для города Санкт-Петербурга классификатора описания инженерно-геологической информации (А.В. Кузьмин, Е.А. Ломакин, С.Я. Нагорный) с целью дальнейшей разработки информационной модели и использования ее для последующих расчетов.

1-й этап: Оцифровка архивных данных.

Первым этапом был выполнен перенос данных инженерно-геологических изысканий с бумажных носителей, до сих пор хранящих большую часть информации о скважинах, в цифровое пространство. Средой для выполнения данной задачи была выбрана программа Microsoft EXCEL. В столбцы таблицы последовательно заносится информация об инженерно-геологическом разрезе отдельно для каждой скважины. Чтобы обеспечить возможность динамического исправления ошибок, столбцы 4, 5, 6 и 7 рассчитываются при помощи встроенных функций Microsoft EXCEL. (рис.2.)

2-й этап: Картирование оцифрованных данных по функции 3D-ИГЭ.

Следующим этапом было произведено картирование каждого слоя разреза по функции 3D-ИГЭ в соответствии с классификатором [6]. Принцип формирования картируемой функции представлен на рис.1.

Рисунок 1. Принцип картирования

Данный принцип обработки информации позволяет в краткой и компактной форме емко отобразить все необходимые данные о картируемом объекте с необходимым для конкретной задачи приближением. Так, например, в данной работе картирование производится до третьей функции.

Именно отображение ИГЭ в форме картированной функции и унифицирует данные – представленные в подобной форме, они больше не различаются от организации к организации и не зависят от возраста изысканий и особенностей записей того периода. Также подобная форма впоследствии позволяет решить и не менее важную задачу пространственной увязки данных. В результате таблица приобретает вид, представленный на рисунке 2.

Разрезы скважин по параметру 3D-ИГЭ													
НОМЕР СКВАЖИНЫ	КООРДИНАТЫ СКВАЖИНЫ	ОТМЕТКА ЗЕМНОЙ ПОВЕРХНОСТИ	ОТМЕТКА КРОВЛИ	отметка подошвы	ГЛУБИНА КРОВЛИ	ГЛУБИНА ПОДОШВЫ	мощность игэ	итк	ЕЛИ				
1	2	3	4	5	6	7	8	9	10				
2429-02-135	x=	3,11	3,11	1,11	0	2	2	{1/70}	{1/70}.3				
	113952,00		1,11	-0,09	2	3,2	1,2	{6/11}	{6/11}.3				
	y=		-0,09	-1,59	3,2	4,7	1,5	{6/6}	{6/6}.2				
	95014		-1,59	-6,89	4,7	10	5,3	{6/11}	{6/11}.3				
			-6,89	-8,29	10	11,4	1,4	{6/21}	{6/21}.4				
			-8,29	-9,39	11,4	12,5	1,1	{6/5}	{6/5}.2				
			-9,39	-11,09	12,5	14,2	1,7	{6/11}	{6/11}.3				
			-11,09	-15,29	14,2	18,4	4,2	{7/21}	{7/21}.6				
			-15,29	-20,89	18,4	24	5,6	{7/32}	{7/32}.5				
			-20,89	-22,69	24	25,8	1,8	{7/21}	{7/21}.4				
			-22,69	-23,89	25,8	27	1,2	{7/11}	{7/11}.3				
			-23,89	-65,89	27	69	42	{8/27}	{8/27}.3				
			-65,89	-66,59	69	69,7	0,7	{10/11}	{10/11}.2				
			-66,59	-68,29	69,7	71,4	1,7	{10/22}	{10/22}.4				
			-68,29	-75,09	71,4	78,2	6,8	{10/21}	{10/21}.4				
			-75,09	-76,69	78,2	79,8	1,6	{17/37}	{17/37}.1				
			-76,69	-87,49	79,8	90,6	10,8	{17/38}	{17/38}.2				

Рисунок 2. Таблица оцифровки единичной скважины

3-й этап: Составление таблицы представленных на объекте ИГЭ:

На основе всех полученных картируемых функций была составлена общая таблица по объекту. В нее были внесены все выделенные для конкретного объекта ИГЭ, а также их физико-механические характеристики.

4-й этап: Проверка достоверности.

Согласно принципу обратной связи, во время составления общей таблицы также проводится дополнительная проверка полученных данных путем их сопоставления с описанием общей инженерно-геологической ситуации города и классификатором. В результате подобной проверки были исключены из дальнейшей обработки скважины, где была не точно отражена информация и те ИГЭ, которые на территории Санкт-Петербурга не встречаются. Это позволило отразить реальную инженерно-геологической ситуацию города.

Примером может послужить отличие ИГЭ глинистых грунтов возраста лужской морены до и после проведения проверки:

71	ожения		Супесь с	Твердая	8/17	1	{8/17}.1
72	отл	gQIIIIz	гарвием и галькой	Пластичная	8/17	2	{8/17}.2
73	OBM			Текучая	8/17	3	{8/17}.3
74	иник	gQ]		Полутвердый	8/27	2	{8/27}.2
75	е лед		Суглинок с	Тугопластичный	8/27	3	{8/27}.3
76	жскв		гравием и галькой	Мягкопластичный	8/27	4	{8/27}.4
77	Луз			Текучепластичны й	8/27	5	{8/27}.5

Рисунок 3. Вид общей таблицы, ИГЭ лужской морены, до проверки

71	отложения		Песок средний	Плотный		8/4	8/4 1 {8/4}.1	{8/4}.1
72	ледниковые	şQIIIIz	Супесь с гарвием и		Твердая	8/17	1	{8/17}.1
73		галькой		Пластичная	8/17	2	{8/17}.2	
74			Суглинок с		Полутвердый	8/27	2	{8/27}.2
75	Лужские		гравием и		Тугопластичный	8/27	3	{8/27}.3
76	5		галькой		Мягкопластичный	8/27	4	{8/27}.4

Рисунок 4. Вид общей таблицы, ИГЭ лужской морены, после проверки

5-й этап: Проверка качества архивных данных.

Дополнительно проверить качество переноса архивных данных и проведенных изысканий позволила система, разработанной на основе классификатора и базе программного комплекса Microsoft EXCEl. Мы назвали систему «Светофор».

Данная система сравнивает полученные при изысканиях физикомеханические характеристики каждого ИГЭ с его характеристиками нормативными, и окрашивает ячейку таблицы, в зависимости от результата, в соответствующий цвет.

Зеленый и желтый цвета обозначают достаточное качество полученных данный, красный же свидетельствует о том, что данные подлежат дополнительной проверке — либо изыскания были проведены с нарушением технологии или данные оказались неточными, либо данный слой является отдельным новым ИГЭ, не внесенным в таблицу.

Таким образом, при помощи данной системы выделяются скважины с достоверными данными и те, к которым стоит отнестись с большим вниманием. Скважина, данные изысканий для которой считаются пригодными к использованию, будет иметь вид:

P CKBAKJBBM		OTMETKA KPOBJIH			отивтка подошвы	БИНА КРОВЛИ	вина подошвы	мощность зв-игэ	3D-HT-3			число п	ластичи	ОСТИ (б.р.)				показат					r	СТЕСТВЕН		кность (%	,
HOME	OTM	OTME	OTME	ETAR	CIYSE	Мощ			HOPMA	MAX	MIN	MED MED	MAX		MIN	мах	MIN	MED MED	MAX		HOPMA	MAX	MIN	MED MED	MAX		
1	2	5	6	7	8	9	11		12	13	14	15	16		17	18	19	20	21		22	23	24	25	26		
2429-02-135	3,11	3,11	1,11	0	2	2	(1/70).3	0			3	6,92	11	0			0,09	1,12	2	0	25	27	1	24,90	127		
		1,11	-0,09	2	3,2	1,2	{6/11}.3	1	1	7	0,04	5,60	10,7	1	1	>	0,2	1,01	2,1	1	40	>	3,7	41,10	172		
		-0,09	-1,59	3,2	4,7	1,5	(6/6).2	0			4	7,00	13	0			-	0,80	1,25	1	32,5	35	2	34,08	120		
		-1,59	-6,89	4,7	10	5,3	{6/11}.3	1	1	7	0,04	5,60	10,7	1	1	>	0,2	1,01	2,1	1	40	>	3,7	41,10	172		
		-6,89	-8,29	10	11,4	1,4	(6/21).4	1	7	17	0,4	8,55	11	0	0,5	0,75	0,33	0,96	1,75	1	27,5	30	21,3	29,13	45,9		
		-8,29	-9,39	11,4	12,5	1,1	{6/5}.2	1						1						1	20	22,5	18,15	21,20	24		
		-9,39	-11,09	12,5	14,2	1,7	(6/11).3	1	1	7	0,04	5,60	10,7	1	1	>	0,2	1,01	2,1	1	40	>	3,7	41,10	172		
		-11,09	-15,29	14,2	18,4	4,2	{7/21}.6	1	7	17	5	7,75	9	0	1	>	0,56	0,71	0,84	1	25	27,5	22	26,26	30		
		-15,29	-20,89	18,4	24	5,6	(7/32).5	0	17	>	0,2	12,78	19	1	0,75	1	0,7	0,98	1,3	1	32,5	35	22	33,48	46		
		-20,89	-22,69	24	25,8	1,8	{7/21}.4	1	7	17	5	11,39	16	1	0,5	0,75		0,61	1,28	2	30	32,5	14	29,74	43,1		
		-22,69	-23,89	25,8	27	1,2	(7/11).3	0	1	7	-	-	-	1	1	>	-		-	ян/Д	0	0	-		-		
		-23,89	-65,89	27	69	42	{8/27}.3	1	7	17	- 6	8,65	15	1	0,25	0,5		0,35	0,56	1	18	20	16	19,61	36		
		-65,89	-66,59	69	69,7	0,7	{10/11}.2	0	1	7	-	-	-	0	0	1				ян/Д	0	0					
		-66,59	-68,29	69,7	71,4	1,7	{10/22}.4	1	7	17	9	9,00	9	0	0,5	0,75				1	25	27,5	27	27,00	27		
		-68,29	-75,09	71,4	78,2	6,8	(10/21).4	1	7	17	8	10,00	13	1	0,5	0,75	0,54	0,54	0,54	1	25	27,5	21	25,23	29		
		-75,09	-76,69	78,2	79,8	1,6	{17/37}.1	0	17	,	12	13,00	14	1	0	0	-0,5	-0,28	0,12	1	16	18	15	17,67	20		
		-76,69	-87,49	79,8	90,6	10,8	{17/38}.2	0	17	,	9	12,00	16	0	0	0,25				1	12	14	10	13,33	17		

Рисунок 5. Вид таблицы оцифровки скважины с качественными исходными данными

Выводы: В ходе проведения обработки исходных данных объекта были получены следующие результаты:

- исходные данные о скважинах перенесены с бумажных носителей в цифровой формат и подготовлены к дальнейшей работе путем унификации при помощи функции картирования.
- произведена проверка достоверности и качества исходных данных, исправлены ошибки, возникшие на основе человеческого фактора и неточностей изысканий.
- выявлены скважины, исходные данные по которым требуют дополнительной проверки.
- подготовлена цифровая основа для дальнейшего создания объемной информационной модели и последующего проведения расчетов по полученным данным.

Итог: После произведения всех этапов обработки исходных данных получена унифицированная информация, проверенная на достоверность и компактно отраженная, но при этом содержащую все необходимую информацию. Данные такого вида можно считать достаточно качественными, чтобы на их основе строить информационную модель, используя различные программные комплексы, а также проводить расчеты, которые благодаря обработке информации согласно принципам работы с ней, будут точнее и займут меньше времени и потребуют меньше бюджетных средств, что позволит повысить инвестиционную привлекательность будущих объектов.

Данная методика работы с исходной информацией универсальна и доступна к внедрению. Это один из самых простых шагов столь необходимой цифровизации строительной отрасли.

Список литературы:

- 1. Постановление Правительства №2357 от 20.12.2022
- 2. Статья 57.5. Информационная модель объекта капитального строительства
- 3. СП 333.1325800.2020 «Информационное моделирование в строительстве»

- 4. Закон о стратегии социально-экономического развития города Санкт-Петербурга до 2035 года от 19.12.2018
- 5. Т. В. Крамакова, «Территориальное и стратегическое планирование: основные проблемы и тенденции развития законодательства», 2013
- 6. Е.А. Ломакин, М.Б. Заводчикова, «Учебное пособие Проектноизыскательское управление в градостроительстве (на примере концепции комплексного использования объектов подземного пространства)», 2023